Skip to main content
Log in

The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: a thermodynamic study

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Fluid-phase relationships and thermodynamic reaction modelling based on published mineral solubility data are used to re-assess the Cu–Au-mineralising fluid processes related to calc-alkaline magmatism. Fluid inclusion microanalyses of porphyry ore samples have shown that vapour-like fluids of low to intermediate salinity and density (~2–10 wt% NaCl eq.; ~0.1–0.3 g cm−3) can carry percentage-level concentrations of copper and several ppm gold at high temperature and pressure. In epithermal deposits, aqueous fluids of similar low to intermediate salinity but liquid-like density are ubiquitous and commonly show a magmatic isotope signature. This paper explores the physical evolution of low-salinity to medium-salinity magmatic fluids of variable density, en route from their magmatic source through the porphyry regime to the near-surface epithermal environment, and investigates the chemical conditions required for effective transport of gold and other components from the magmatic to the epithermal domain. Multicomponent reaction modelling guided by observations of alteration zonation and vein overprinting relationships predicts that epithermal gold deposits are formed most efficiently by a specific succession of processes during the evolution of a gradually cooling magmatic–hydrothermal system. (1) The low-salinity to medium-salinity fluid, after separating from the magma and possibly condensing out some hypersaline liquid in the high-temperature porphyry environment, must physically separate from the denser and more viscous liquid, and then cool within the single-phase fluid stability field. By cooling under adequate confining pressure, such a vapour will evolve above the critical curve and contract, without any heterogeneous phase change, to an aqueous liquid of the same salinity. (2) High concentrations of gold, transported as stable Au bisulphide complexes supporting >1 ppm Au even at 200°C, can be maintained throughout cooling, provided that the fluid initially carries an excess of H2S over Cu+Fe on a molal scale. This condition is favoured by an initially high sulphide content in a particularly low-salinity magmatic fluid, or by preferential partitioning of sulphur into a low-salinity vapour and partial removal of Fe into a hypersaline liquid at high temperature. (3) Acid neutralisation further optimises gold transport by maximising the concentration of the HS ligand. This may occur by feldspar destructive alteration along pyrite±chalcopyrite±sulphate veins, in the transition zone between the porphyry and epithermal environments. An alternative acid/base control is the dissolution of calcite in sediments, which may enable long-distance gold transport to Carlin-type deposits, because of the positive feedback between acid neutralisation and permeability generation. The three physical and chemical transport requirements for high-grade epithermal gold mineralisation are suggested to be the common link of epithermal gold deposits to underlying magmatic–hydrothermal systems, including porphyry-Cu–Au deposits. Both mineralisation types are the result of gradual retraction of isotherms around cooling hydrous plutons in similar tectonic and hydrologic environments. As magmatic fluid is generated at increasing depths below the surface the importance of vapour contraction increases, leading to the typical overprinting of potassic, phyllic and advanced argillic alteration and their related ore styles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akinfiev NN, Zotov AV (2001) Thermodynamic description of chloride, hydrosulfide, and hydroxo complexes of Ag(I), Cu(I), and Au(I) at temperatures of 25–500°C and pressures of 1–2000 bar. Geochem Int 39(10):990–1006

    Google Scholar 

  • Alderton DHM, Fallick AE (2000) The nature and genesis of gold–silver–tellurium mineralization in the Metaliferi Mountains of western Romania. Econ Geol 95(3):495–515

    Google Scholar 

  • Anderko A, Pitzer KS (1993a) Equation-of-state representation of phase-equilibria and volumetric properties of the system NaCl–H2O above 573 K. Geochim Cosmochim Acta 57(8):1657–1680

    Article  Google Scholar 

  • Anderko A, Pitzer KS (1993b) Phase-equilibria and volumetric properties of the systems KCl–H2O and NaCl–KCl–H2O above 573 K—equation of state representation. Geochim Cosmochim Acta 57(20):4885–4897

    Article  Google Scholar 

  • Arribas AJ (1995) Characteristics of high-sulfidation epithermal deposits, and their relation to magmatic fluid. In: Thompson JFH (ed) Magmas, fluids, and ore deposits. Mineralogical Association of Canada, pp 419–454

  • Arribas A, Cunningham CG, Rytuba JJ, Rye RO, Kelly WC, Podwysocki MH, McKee EH, Tosdal RM (1995a) Geology, geochronology, fluid inclusions, and isotope geochemistry of the Rodalquilar gold alunite deposit, Spain. Econ Geol Bull Soc Econ Geol 90(4):795–822

    Google Scholar 

  • Arribas A, Hedenquist JW, Itaya T, Okada T, Concepcion RA, Garcia JS (1995b) Contemporaneous formation of adjacent porphyry and epithermal Cu–Au deposits over 300 ka in Northern Luzon, Philippines. Geology 23(4):337–340

    Article  Google Scholar 

  • Audétat A, Pettke T (2003) The magmatic–hydrothermal evolution of two barren granites: a melt and fluid inclusion study of the Rito del Medio and Canada Pinabete plutons in northern New Mexico (USA). Geochim Cosmochim Acta 67(1):97–121

    Article  Google Scholar 

  • Audétat A, Günther D, Heinrich CA (1998) Formation of a magmatic–hydrothermal ore deposit: insights with LA–ICP–MS analysis of fluid inclusions. Science 279(5359):2091–2094

    Article  Google Scholar 

  • Audétat A, Günther D, Heinrich CA (2000) Causes for large-scale metal zonation around mineralized plutons: fluid inclusion LA–ICP–MS evidence from the Mole Granite, Australia. Econ Geol 95(8):1563–1581

    Google Scholar 

  • Audétat A, Pettke T, Dolejs D, Bodnar R (2002) Magmatic anhydrite in the Cu-porphyry-related magma at Santa Rita, New Mexico (USA). Geochim Cosmochim Acta 66:A37–A37

    Google Scholar 

  • Bendezu R, Fontbote L, Cosca M (2003) Relative age of Cordilleran base metal lode and replacement deposits, and high sulfidation Au–(Ag) epithermal mineralization in the Colquijirca mining district, central Peru. Mineralium Deposita 38(6):683–694

    Article  Google Scholar 

  • Berger BR, Henley RW (1989) Advances in the understanding of epithermal gold–silver deposits, with special reference to the Western United States. In: Keays RR, Ramsay WHR, Groves DI (eds) The geology of gold deposits: The perspective in 1988. Economic Geology Monograph Series, pp 405–423

  • Bodnar RJ (1995) Fluid-inclusion evidence for a magmatic source for metals in porphyry copper deposits. In: Thompson EJFH (ed) Magmas, fluids and ore deposits. Mineralogical Association of Canada, Short Course Series, pp 139–152

  • Bodnar RJ, Vityk MO (1994) Interpretation of microthermometric data for H2O–NaCl fluid inclusions. In: DeVivo, Frezzotti (eds) Fluid inclusions in minerals, pp 117–130

  • Bodnar RJ, Burnham CW, Sterner SM (1985) Synthetic fluid inclusions in natural quartz III determination of phase equilibrium properties in the system H2O–NaCl to 1000°C and 1500 bars. Geochim Cosmochim Acta 49:1861–1873

    Article  CAS  Google Scholar 

  • Brimhall GH, Ghiorso MS (1983) Origin and ore-forming consequences of the advanced argillic alteration process in hypogene environments by magmatic gas contamination of meteoric fluids. Econ Geol 78(1):73–90

    Google Scholar 

  • Burnham CW (1979) Magmas and hydrothermal fluids. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 71–136

    Google Scholar 

  • Burnham CW (1997) Magmas and hydrothermal fluids. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 3 edn. Wiley, New York, pp 63–125

    Google Scholar 

  • Burnham CW, Ohmoto H (1980) Late-stage processes of felsic magmatism. Mining Geol Spec Issue 8:1–11

    Google Scholar 

  • Cail TL, Cline JS (2001) Alteration associated with gold deposition at the Getchell Carlin-type gold deposit, north-central Nevada. Econ Geol 96(6):1343–1359

    Google Scholar 

  • Camus F, Dilles JH (2001) A special issue devoted to porphyry copper deposits of northern Chile-Preface. Econ Geol 96(2):233–237

    Google Scholar 

  • Candela PA (1989) Magmatic ore-forming fluids; thermodynamic and mass transfer calculations of metal concentrations. In: Whitney JA, Naldrett AJ (eds) Ore deposition associated with magmas. Reviews in Economic Geology. Society of Economic Geologists, Socorro, pp 203–221

  • Candela PA, Piccoli PM (1995) Model ore–metal partitioning from melts into vapor and vapor/brine mixtures. In: Thompson JFH (ed) Magmas, fluids and ore deposits. Mineralogical Association of Canada, pp 101–127

  • Carroll MR, Rutherford MJ (1987) The stability of igneous anhydrite—experimental results and implications for sulfur behavior in the 1982 El-Chichon trachyandesite and other evolved magmas. J Petrol 28(5):781–801

    Google Scholar 

  • Carroll MR, Webster JD (1994) Solubilities of sulfur, noble gases, nitrogen, chlorine, and fluorine in magmas, volatiles in magmas. Reviews in Mineralogy, pp 231–279

  • Chou IM, Eugster HP (1977) Solubility of magnetite in supercritical chloride solutions. Am J Sci 277:1296–1314

    Google Scholar 

  • Claveria RJR (2001) Mineral paragenesis of the Lepanto copper and gold and the Victoria gold deposits, Mankayan Mineral District, Philippines. Resource Geol 51(2):97–106

    Google Scholar 

  • Cline JS, Bodnar RJ (1991) Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt? J Geophys Res 96:8113–8126

    Google Scholar 

  • Cline JS, Bodnar RJ (1994) Direct evolution of brine from a crystallizing silicic melt at the Questa, New Mexico, molybdenum deposit. Econ Geol 89:1780–1802

    Google Scholar 

  • Cline JS, Hofstra AA (2000) Ore–fluid evolution at the Getchell Carlin-type gold deposit, Nevada, USA. Eur J Mineral 12(1):195–212

    Google Scholar 

  • Core D, Kesler SE, Essene EJ, Campbell IH, Allen CM (2004) Copper-rich source regions for giant porphyry copper deposits: Last Chance Stock, Bingham, Utah, SEG Conference on Predictive Mineral Discovery Under Cover: Perth, Australia, pp 230–233

  • Craig JR, Barton PB (1973) Thermochemical approximations for sulfosalts. Econ Geol 68(4):493–506

    Google Scholar 

  • Delmelle P, Bernard A (1994) Geochemistry, mineralogy, and chemical modeling of the acid crater lake of Kawah Ijen Volcano, Indonesia. Geochim Cosmochim Acta 58(11):2445–2460

    Article  Google Scholar 

  • Ding K, Seyfried WE (1992) Determination of Fe–Cl complexing in the low-pressure supercritical region (NaCl fluid)—iron solubility constraints on pH of subseafloor hydrothermal fluids. Geochim Cosmochim Acta 56(10):3681–3692

    Article  Google Scholar 

  • Driesner T (2001) A new model for the thermodynamic and transport properties of the NaCl–Water System from 0–700°C, 0.1 to 500 MPa, and XNaCl from 0 to 1. 11th Annual Goldschmidt Conference, Hot Springs, Virginia

  • Driesner T, Heinrich CA (2002) Revised critical curve for the system H2O–NaCl 12th Annual Goldschmidt Conference, Davos. Geochim Cosmochim Acta A196

  • Drummond SE, Ohmoto H (1985) Chemical evolution and mineral deposition in boiling hydrothermal systems. Econ Geol 80(1):126–147

    Google Scholar 

  • Eastoe CJ (1978) Fluid inclusion study of Panguna–porphyry–copper deposit, Bougainville, Papua, New Guinea. Econ Geol 73(5):721–748

    Google Scholar 

  • Eastoe CJ (1982) Physics and chemistry of the hydrothermal system at the Panguna porphyry copper deposit, Bougainville, Papua, New Guinea. Econ Geol 77(1):127–153

    Google Scholar 

  • Einaudi MT, Hedenquist JW, Inan EE (2003) Sulfidation state of fluids in active and extinct hydrothermal systems: transitions from porphyry to epithermal environments. In: Simmons SF, Graham I (eds) Volcanic, geothermal and ore-forming fluids: Rulers and witnesses of processes within the earth. Econ Geol Spec Publ 343

  • Emsbo P, Hofstra AH, Lauha EA, Griffin GL, Hutchinson RW (2003) Origin of high-grade gold ore, source of ore fluid components, and genesis of the Meikle and neighboring Carlin-type deposits, northern Carlin trend, Nevada. Econ Geol 98(6):1069–1105

    Google Scholar 

  • Etminan H (1977) Le porphyre cuprifère de Sar Cheshmeh (Iran); rôle des phases fluides dans les mècanismes dàltèration et de minèralisation. PhD Thesis, Mem Sci Terre Universitè Nancy (France) 34:249

  • Fournier RO (1987) Conceptual models of brine evolution in magmatic–hydrothermal systems. In: Decker RW, Wright TL, Stauffer PH (eds) Volcanism in Hawaii. Hawaiian Volcano Observatory, pp 1487–1506

  • Fournier RO (1999) Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic–epithermal environment. Econ Geol 94:1193–1211

    Google Scholar 

  • Frank MR, Candela PA, Piccoli PM, Glascock MD (2002) Gold solubility, speciation, and partitioning as a function of HCl in the brine–silicate melt–metallic gold system at 800°C and 100 MPa. Geochim Cosmochim Acta 66(21):3719–3732

    Article  Google Scholar 

  • Frank MR, Candela PA, Piccoli PM (2003) Alkali exchange equilibria between a silicate melt and coexisting magmatic volatile phase: an experimental study at 800°C and 100 MPa. Geochim Cosmochim Acta 67(7):1415–1427

    Article  Google Scholar 

  • Gammons CH, Williams-Jones AE (1997) Chemical mobility of gold in the porphyry–epithermal environment. Econ Geol 92(1):45–59

    CAS  Google Scholar 

  • Giggenbach WF (1980) Geothermal gas equilibria. Geochim Cosmochim Acta 44(12):2021–2032

    Article  Google Scholar 

  • Giggenbach WF (1992) SEG distinguished lecture—magma degassing and mineral deposition in hydrothermal systems along convergent plate boundaries. Econ Geol 87(7):1927–1944

    Google Scholar 

  • Gustafson LB, Hunt JP (1975) Porphyry copper deposit at El Salvador, Chile. Econ Geol 70(5):857–912

    Google Scholar 

  • Halter WE, Pettke T, Heinrich CA (2002) The origin of Cu/Au ratios in porphyry-type ore deposits. Science 296(5574):1844–1846

    Article  Google Scholar 

  • Halter WE, Pettke T, Heinrich CA (2004) Magma evolution and the formation of porphyry Cu–Au ore fluids: evidence from silicate and sulfide melt inclusions. Mineralium Deposita (in press)

  • Hattori KH, Keith JD (2001) Contribution of mafic melt to porphyry copper mineralization: evidence from Mount Pinatubo, Philippines, and Bingham Canyon, Utah, USA. Mineralium Deposita 36(8):799–806

    Article  Google Scholar 

  • Heald P, Foley NK, Hayba DO (1987) Comparative anatomy of volcanic-hosted epithermal deposits—acid sulfate and Adularia–sericite types. Econ Geol 82(1):1–26

    Google Scholar 

  • Hedenquist JW, Lowenstern JB (1994) The role of magmas in the formation of hydrothermal ore deposits. Nature 370(6490):519–527

    Google Scholar 

  • Hedenquist JW, Richards JP (1998) The influence of geochemical techniques on the development of genetic models for porphyry copper deposits. In: Richards JP, Larson PB (eds) Techniques in hydrothermal ore deposits geology. Reviews in Economic Geology, pp 235–256

  • Hedenquist JW, Simmons SF, Giggenbach WF, Eldridge CS (1993) White-Island, New Zealand, volcanic–hydrothermal system represents the geochemical environment of high-sulfidation Cu and Au ore deposition. Geology 21(8):731–734

    Article  Google Scholar 

  • Hedenquist JW, Aoki M, Shinohara H (1994a) Flux of volatiles and ore-forming metals from the magmatic–hydrothermal system of Satsuma Iwojima Volcano. Geology 22(7):585–588

    Article  Google Scholar 

  • Hedenquist JW, Matsuhisa Y, Izawa E, White NC, Giggenbach WF, Aoki M (1994b) Geology, geochemistry, and origin of high sulfidation Cu–Au mineralization in the Nansatsu district, Japan. Econ Geol 89(1):1–30

    Google Scholar 

  • Hedenquist JW, Arribas A, Reynolds TJ (1998) Evolution of an intrusion-centered hydrothermal system: far Southeast-Lepanto porphyry and epithermal Cu–Au deposits, Philippines. Econ Geol 93(4):373–404

    Google Scholar 

  • Heinrich CA, Eadington PJ (1986) Thermodynamic predictions of the hydrothermal chemistry of arsenic, and their significance for the paragenetic sequence of some cassiterite–arsenopyrite–base metal sulfide deposits. Econ Geol 81(3):511–529

    Google Scholar 

  • Heinrich CA, Ryan CG, Mernagh TP, Eadington PJ (1992) Segregation of ore metals between magmatic brine and vapor—a fluid inclusion study using pixe microanalysis. Econ Geol 87(6):1566–1583

    Google Scholar 

  • Heinrich CA, Walshe JL, Harrold BP (1996) Chemical mass transfer modelling of ore-forming hydrothermal systems: current practise and problems. Ore Geol Rev 10(3-6):319–338

    Article  Google Scholar 

  • Heinrich CA, Günther D, Audétat A, Ulrich T, Frischknecht R (1999) Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions. Geology 27(8):755–758

    Article  Google Scholar 

  • Heinrich CA, Pettke T, Halter WE, Aigner-Torres M, Audétat A, Günther D, Hattendorf B, Bleiner D, Guillong M, Horn I (2003) Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass spectrometry. Geochim Cosmochim Acta 67(18):3473–3497

    Article  Google Scholar 

  • Heinrich CA, Driesner T, Stefansson A, Seward TM (2004) Magmatic vapor contraction and the transport of gold from porphyry to epithermal ore deposits. Geology 32(9):761–764

    Article  Google Scholar 

  • Helgeson HC (1970) A chemical and thermodynamic model of ore deposition in hydrothermal systems. Mineral Soc Am Spec Paper 3:155–186

    Google Scholar 

  • Hemley JJ, Cygan GL, Fein JB, Robinson GR, D’Angelo WM (1992) Hydrothermal ore-forming processes in the light of studies in rock-buffered systems 1 Iron–copper–zinc–lead sulfide solubility relations. Econ Geol 87(1):1–22

    Google Scholar 

  • Henley RW, McNabb A (1978) Magmatic vapor plumes and ground–water interaction in porphyry copper emplacement. Econ Geol 73:1–20

    Google Scholar 

  • Ho PC, Palmer DA, Gruszkiewicz MS (2001) Conductivity measurements of dilute aqueous HCl solutions to high temperatures and pressures using a flow-through cell. J Phys Chem B 105(6):1260–1266

    Article  Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorp Geol 16(3):309–343

    Article  Google Scholar 

  • Iakovleva VP (2003) UV specrophotometric studies of arsenic(III) and antimony(IIII) aqueous chemistry from 25 to 300°C. Unpubl PhD Thesis, ETH Zürich

  • Jannas RR, Beane RE, Ahler BA, Brosnahan DR (1990) Gold and copper mineralization at the El-Indio deposit, Chile. J Geochem Exploration 36(1-3):233–266

    Article  Google Scholar 

  • Johnson JW, Oelkers EH, Helgeson HC (1992) SUPCTR92—a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 bar to 5000 bar and 0°C to 1000°C. Comput Geosci 18(7):899–947

    Article  Google Scholar 

  • Johnston MK, Ressel MW (2004) Carlin-type and distal-disseminated Au–Ag deposits: related distal expressions of Eocene intrusive centers in North-Central Nevada. SEG Newslett 59:12–14

    Google Scholar 

  • Kehayov R, Bogdanov K, Fanger L, von Quadt A, Pettke T, Heinrich CA (2003) The fluid chemical evolution of the Elatiste porphyry Cu–Au–PGE deposit, Bulgaria. In: Eliopoulos DG (ed) Mineral exploration and sustainable development. Millpress, Rotterdam, pp 1173–1176

    Google Scholar 

  • Keppler H (1999) Experimental evidence for the source of excess sulfur in explosive volcanic eruptions. Science 284:1652–1654

    Article  Google Scholar 

  • Kesler SE, Ye Z, Fortuna J, Riciputi LC (2003b) Epithermal–Carlin transition: evidence for magmatic input into Carlin-type deposits. In: Eliopoulos DG (ed) Mineral exploration and sustainable development. Millpress, Rotterdam, pp 493–494

    Google Scholar 

  • Kesler SE, Fortuna J, Ye ZJ, Alt JC, Core DP, Zohar P, Borhauer J, Chryssoulis SL (2003a) Evaluation of the role of sulfidation in deposition of gold, Screamer section of the Betze–Post Carlin-type deposit, Nevada. Econ Geol 98(6):1137–1157

    Google Scholar 

  • Kettler RM, Rye RO, Kessler SE, Meyers PA, Polanco J, Russell N (1992) Gold deposition by sulfidation of ferrous Fe in the Lacustrine sediments of the Pueblo Viejo district (Dominican Republic)—the effect of Fe–C–S diagenesis on later hydrothermal mineralization in a maar diatreme complex. Chem Geol 99(1–3):29–50

    Article  Google Scholar 

  • Kouzmanov K, Ramboz C, Lerouge C, Deloule E, Beaufort D, Bogdanov K (2003) Stable isotopic constraints on the origin of epithermal Cu–Au and related porphyry copper mineralisations in the southern Pangyurishte district, Srednogorie zone, Bulgaria. In: Eliopoulos DG (ed) Mineral exploration and sustainable development. Millpress, Rotterdam, pp 1181–1184

    Google Scholar 

  • Krupp RE, Seward TM (1987) The Rotokawa geothermal system, New Zealand—an active epithermal gold-depositing environment. Econ Geol 82(5):1109–1129

    Google Scholar 

  • Landtwing MR, Pettke T, Halter WE, Heinrich CA, Redmond PB, Einaudi MT (2004) Causes for Cu–Fe–sulfide deposition in the Bingham porphyry Cu–Au–Mo deposit, Utah: combined SEM-cathodoluminescence petrography and LA–ICPMS analysis of fluid inclusions. Earth Planetary Sci Lett (in press)

  • Liu WH, McPhail DC, Brugger J (2001) An experimental study of copper(I) chloride and copper(I) acetate complexing in hydrothermal solutions between 50°C and 250°C and vapor-saturated pressure. Geochim Cosmochim Acta 65(17):2937–2948

    Article  Google Scholar 

  • Losada-Calderòn AJ, McPhail DC (1996) Porphyry and high-sulfidation epithermal mineralization in the Nevados del Famatina mining district, Argentina. In: Camus F, Sillitoe RM, Peterson R (eds) Andean copper deposits: new discoveries, mineralization, styles and metallogeny. Soc Econ Geol Spec Publ 5:91–118

    Google Scholar 

  • Loucks RR, Mavrogenes JA (1999) Gold solubility in supercritical hydrothermal brines measured in synthetic fluid inclusions. Science 284(5423):2159–2163

    Article  CAS  PubMed  Google Scholar 

  • Luhr JF (1990) Experimental phase-relations of water-saturated and sulfur-saturated arc magmas and the 1982 eruptions of El-Chichon volcano. J Petrol 31(5):1071–1114

    Google Scholar 

  • Mancano DP, Campbell AR (1995) Microthermometry of enargite-hosted fluid inclusions from the Lepanto, Philippines, high-sulfidation Cu–Au deposit. Geochim Cosmochim Acta 59(19):3909–3916

    Article  Google Scholar 

  • Moritz R, Jacquat S, Chambefort I, Fontignie D, Petrunov R, Georgieva S, von Quadt A (2003) Controls on ore formation at the high-sulfidation Au–Cu Chelopech deposit, Bulgaria: evidence from infrared fluid inclusion microthermometry of enargite and isotope systematics of barite. In: Eliopoulos DG (ed) Mineral exploration and sustainable development. Millpress, Rotterdam, pp 1209–1212

    Google Scholar 

  • Mountain BW, Seward TM (1999) The hydrosulfide sulfide complexes of copper(I): experimental determination of stoichiometry and stability at 22°C and reassessment of high temperature data. Geochim Cosmochim Acta 63(1):11–29

    Article  Google Scholar 

  • Muntean JL, Einaudi MT (2001) Porphyry–epithermal transition: Maricunga belt, northern Chile. Econ Geol 96(4):743–772

    Google Scholar 

  • Muntean JL, Kesler SE, Russell N, Polanco J (1990) Evolution of the Monte Negro acid sulfate Au–Ag deposit, Pueblo Viejo, Dominican Republic—important factors in grade development. Econ Geol 85(8):1738–1758

    Google Scholar 

  • Oelkers EH, Helgeson HC (1991) Calculation of activity coefficients and degrees of formation of neutral ion-pairs in supercritical electrolyte solutions. Geochim Cosmochim Acta 55(5):1235–1251

    Article  Google Scholar 

  • Perello J, Cox D, Garamjav D, Sanjdorj S, Diakov S, Schissel D, Munkhbat TO, Oyun G (2001) Oyu Tolgoi, Mongolia: Siluro–Devonian porphyry Cu–Au–(Mo) and high-sulfidation Cu mineralization with a cretaceous chalcocite blanket. Econ Geol 96(6):1407–1428

    Google Scholar 

  • Pokrovski G, Gout R, Schott J, Zotov A, Harrichoury JC (1996) Thermodynamic properties and stoichiometry of As(III) hydroxide complexes at hydrothermal conditions. Geochim Cosmochim Acta 60(5):737–749

    Article  Google Scholar 

  • Rankin AH, Ramsey MH, Coles B, Vanlangevelde F, Thomas CR (1992) The composition of hypersaline, iron-rich granitic fluids based on laser-ICP and Synchrotron-XRF microprobe analysis of individual fluid inclusions in Topaz, Mole Granite, Eastern Australia. Geochim Cosmochim Acta 56(1):67–79

    Article  Google Scholar 

  • Ransome FL (1907) The association of alunite with gold in the Goldfield district, Nevada. Econ Geol 2:667–692

    Google Scholar 

  • Redmond PB, Einaudi MT, Inan EE, Landtwing MR, Heinrich CA (2004) Copper deposition by fluid cooling in intrusion-centered systems: new insights from the Bingham porphyry ore deposit, Utah. Geology 32(3):217–220

    Article  Google Scholar 

  • Reynolds TJ, Beane RE (1985) Evolution of hydrothermal fluid characteristics at the Santa Rita, New Mexico, porphyry copper deposit. Econ Geol 80:1328–1347

    Google Scholar 

  • Richards JP, Bray CJ, Channer DMD, Spooner ETC (1997) Fluid chemistry and processes at the Porgera gold deposit, Papua New Guinea. Mineralium Deposita 32(2):119–132

    Article  Google Scholar 

  • Roedder E (1971) Fluid inclusion studies on the porphyry-type ore deposits at Bingham, Utah, Butte, Montana, and Climax, Colorado. Econ Geol 66(1):98–118

    Google Scholar 

  • Rohrlach BD (2003) Tectonic evolution, petrochemistry, geochronology and palaeohydrology of the Tampakan Porphyry and high-sulfidation epithermal Cu–Au deposit, Mindanao, Philippines. unpubl PhD Thesis, Australian National University, pp 499, 23 app

  • Ronacher E, Richards JP, Reed MH, Bray CJ, Spooner ETC, Adams PD (2004) Characteristics and evolution of the hydrothermal fluid in the North zone high-grade area, Porgera gold deposit, Papua New Guinea. Econ Geol 99(5):843–867

    Google Scholar 

  • Ruggieri G, Lattanzi P, Luxoro SS, Dessi R, Benvenuti M, Tanelli G (1997) Geology, mineralogy, and fluid inclusion data of the Furtei high-sulfidation gold deposit, Sardinia, Italy. Econ Geol 92(1):1–19

    Google Scholar 

  • Rusk B, Reed MH, Dilles JH, Klemm L (2004) Compositions of magmatic–hydrothermal fluids determined by LA–ICPMS of fluid inclusions from the porphyry copper–molybdenum deposit at Butte, Montana. Chem Geol 210(1-4):173–199

    Article  Google Scholar 

  • Rye RO (1993) The evolution of magmatic fluids in the epithermal environment—the stable isotope perspective. Econ Geol 88(3):733–753

    Google Scholar 

  • Sänger von Oepen P, Friedrich G, Vogt JH (1989) Fluid evolution, wall rock alteration, and ore mineralization associated with the Rodalquilar epithermal gold deposit in Southeast Spain. Mineralium Deposita 24(4):235–243

    Article  Google Scholar 

  • Sawkins FJ (1990) Metal deposits in relation to plate tectonics. Minerals and Rocks, 17. Springer, Berlin Heidelberg New York, p 461

    Google Scholar 

  • Sawkins FJ, Scherkenbach DA (1981) High copper content of fluid inclusions in quartz from northern Sonora: implications for ore genesis theory. Geology 9:37–40

    Article  Google Scholar 

  • Seal RR, Essene EJ, Kelly WC (1990) Tetrahedrite and tennantite—evaluation of thermodynamic data and phase equilibria. Can Mineral 28:725–738

    Google Scholar 

  • Shinohara H, Hedenquist JW (1997) Constraints on magma degassing beneath the far southeast porphyry Cu–Au deposit, Philippines. J Petrol 38(12):1741–1752

    Article  Google Scholar 

  • Shinohara H, Kazahaya K, Lowenstern JB (1995) Volatile transport in a convecting magma column—implications for porphyry Mo mineralization. Geology 23(12):1091–1094

    Article  Google Scholar 

  • Sillitoe RH (1973) The tops and bottoms of porphyry copper deposits. Econ Geol 68(6):799–815

    Google Scholar 

  • Sillitoe RH (1983) Enargite-bearing massive sulfide deposits high in porphyry copper systems. Econ Geol 78(2):348–352

    Google Scholar 

  • Sillitoe RH (1994) Erosion and collapse of volcanoes—causes of telescoping in intrusion-centered ore deposits. Geology 22(10):945–948

    Article  Google Scholar 

  • Sillitoe RH (1997) Characteristics and controls of the largest porphyry copper–gold and epithermal gold deposits in the circum-Pacific region. Austral J Earth Sci 44(3):373–388

    Google Scholar 

  • Sillitoe RH, Bonham HF (1990) Sediment-hosted gold deposits—distal products of magmatic–hydrothermal systems. Geology 18(2):157–161

    Article  Google Scholar 

  • Sillitoe RH, Hedenquist JW (2003) Linkages between volcanotectonic settings, ore-fluid compositions and epithermal precious metal deposits. In: Simmons SF, Graham I (eds) Volcanic, geothermal and ore-forming fluids: rulers and witnesses of processes within the earth. Econ Geol Spec Publ 343

  • Solomon M (1990) Subduction, arc reversal, and the origin of porphyry copper–gold deposits in island arcs. Geology 18:630–633

    Article  Google Scholar 

  • Spycher NF, Reed MH (1989) Evolution of a broadlands-type epithermal ore fluid along alternative PT paths—implications for the transport and deposition of base, precious, and volatile metals. Econ Geol 84(2):328–359

    Google Scholar 

  • Stefánsson A (2003) The stability and stoichiometry of gold(I) and silver(I) complexes in hydrothermal solutions. PhD Thesis 14808, ETH Zürich, 142 pp, 2 Appendices

  • Stefánsson A, Seward TM (2003) Stability of chloridogold(I) complexes in aqueous solutions from 300 to 600°C and from 500 to 1800 bar. Geochim Cosmochim Acta 67(23):4559–4576

    Article  Google Scholar 

  • Stefánsson A, Seward TM (2004) Gold(I) complexing in aqueous sulfide solutions to 500°C at 500 bar. Geochim Cosmochim Acta 68:4121–4143

    Article  Google Scholar 

  • Stoffregen R (1987) Genesis of acid-sulfate alteration and Au–Cu–Ag mineralization at Summitville, Colorado. Econ Geol 82(6):1575–1591

    Google Scholar 

  • Stoffregen RE, Alpers CN, Jambor JL (2000) Alunite–jarosite crystallography, thermodynamics, and geochronology: sulfate minerals—crystallography, geochemistry and environmental significance. Mineral Soc Am Rev Mineral 40:453–479

    Google Scholar 

  • Streck MJ, Dilles JH (1998) Sulfur evolution of oxidized arc magmas as recorded in apatite from a porphyry copper batholith. Geology 26(6):523–526

    Article  Google Scholar 

  • Sverjensky DA, Shock EL, Helgeson HC (1997) Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb. Geochim Cosmochim Acta 61(7):1359–1412

    Article  Google Scholar 

  • Symonds RB, Rose WI, Bluth GJS, Gerlach TM (1994) Volcanic gas studies—methods, results, and applications: volatiles in magmas. Reviews in Mineralogy, pp 1–66

  • Taran YA, Hedenquist JW, Korzhinsky MA, Tkachenko SI, Shmulovich KI (1995) Geochemistry of magmatic gases from Kudryavy Volcano, Iturup, Kuril Islands. Geochim Cosmochim Acta 59(9):1749–1761

    Article  Google Scholar 

  • Taylor HP (1974) Application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ Geol 69(6):843–883

    CAS  Google Scholar 

  • Tosdal RM, Richards JP (2001) Magmatic and structural controls on the development of porphyry Cu±Mo±Au deposits. In: Richards JP, Tosdal RM (eds) Structural controls on ore genesis. Reviews in Economic Geology, pp 157–180

  • Turnbull AG, Wadsley MW (1986) The CSIRO-SGTE THERMODATA System (Version V). Commonwealth Scientific and Industrial Research Organisation, Port Melbourne, Division of Mineral Chemistry Communications 1–7:413

  • Ulrich T, Heinrich CA (2001) Geology and alteration geochemistry of the porphyry Cu–Au deposit at Bajo de la Alumbrera, Argentina (2001) Economic Geology 96:1719, correctly reprinted in 2002 97(8):1863–1888

  • Ulrich T, Günther D, Heinrich CA (1999) Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits. Nature 399:676–679

    Article  CAS  Google Scholar 

  • Ulrich T, Günther D, Heinrich CA (2001) Evolution of a porphyry Cu–Au deposit, based on LA–ICP-MS analysis of fluid inclusions: Bajo de la Alumbrera, Argentina. Economic Geology 96:1743, correctly reprinted in 2002 97(8):1888–1920

    Google Scholar 

  • Vennemann TW, Muntean JL, Kesler SE, Oneil JR, Valley JW, Russell N (1993) Stable isotope evidence for magmatic fluids in the Pueblo-Viejo epithermal acid sulfate Au–Ag deposit, Dominican Republic. Econ Geol 88(1):55–71

    Google Scholar 

  • Wang Y, Sasaki M, Sasada M, Chen C-H (1999) Fluid inclusion studies of the Chinkuashih high-sulfidation gold–copper deposits in Taiwan. Chem Geol 154:155–167

    Article  Google Scholar 

  • Watanabe Y, Hedenquist J (2001) Mineralogic and stable isotope zonation at the surface over the El Salvador porphyry copper deposit, Chile. Econ Geol 96(8):1775–1797

    Google Scholar 

  • Webster JG (1990) The solubility of As2S3 and speciation of As in dilute and sulfide-bearing fluids at 25 and 90°C. Geochim Cosmochim Acta 54(4):1009–1017

    Article  Google Scholar 

  • White NC, Hedenquist JW (1990) Epithermal environments and styles of mineralization—variations and their causes, and guidelines for exploration. J Geochem Exploration 36(1-3):445–474

    Article  Google Scholar 

  • Williams TJ, Candela PA, Piccoli PM (1997) Hydrogen–alkali exchange between silicate melts and two-phase aqueous mixtures: an experimental investigation. Contrib Mineral Petrol 128(2-3):114–126

    Article  Google Scholar 

  • Williams PJ, Bin Fu, Pollard PJ, Baker T, Margotomo W, Ryan CG, Van Achterbergh E, Mernagh TP, Condliffe E, Yardley BWD (2003) Fluid inclusion geochemistry of the Grasberg Cu–Au porphyry (abstract). Appl Earth Sci Trans Inst Min Metall B112

  • Williams-Jones AE, Migdisov AA, Archibald SM, Xiao ZF (2002) Vapor-transport of ore metals. In: Hellmann R, Wood SA (eds) Water–rock interaction: a tribute to David A Crerar. The Geochemical Society, Special Publication, pp 279–305

  • Wilson JWJ, Kesler SE, Cloke PL, Kelly WC (1980) Fluid inclusion geochemistry of the Granisle and Bell porphyry copper deposits, British Columbia. Econ Geol 75(1):45–61

    Google Scholar 

  • Woitsekhowskaya MB, Peters SG (1998) Geochemical modeling of alteration and gold deposition at the Betze deposit, Eureka County, Nevada: U.S. Geological Survey Open File Report 98–338, 211–222

  • Xiao ZF, Gammons CH, Williams-Jones AE (1998) Experimental study of copper(I) chloride complexing in hydrothermal solutions at 40 to 300°C and saturated water vapor pressure. Geochim Cosmochim Acta 62(17):2949–2964

    Article  Google Scholar 

  • Zotov AV, Kudrin AV, Levin KA, Shilina ND, Var’yash LN (1995) Experimental studies of the solubility and complexing of selected ore elements (Au, Ag, Cu, Mo, As, Sb, Hg) in aqueous solution. In: Shmulovich KI, Yardley BWD, Gonchar GG (eds) Fluids in the crust. Chapman & Hall, London, pp 95–137

    Google Scholar 

Download references

Acknowledgements

This study builds on a long collaboration in the fluids and ore deposits group at ETH Zürich, which included Andreas Audétat, Thomas Driesner, Sebastian Geiger, Detlef Günther, Werner Halter, Kalin Kouzmanov, Marianne Landtwing, Thomas Pettke, Thomas Ulrich and others over the years. I am grateful for the thoughtful comments from Paul Barton, Lluis Fontboté, Steve Kesler, Robert Moritz, John Ridley, Mike Solomon, Noel White, Anthony Williams-Jones and other colleagues participating in the 2004 Swiss–Japanese Workshop on Epithermal Ore Deposits. Many thanks especially to Jeff Hedenquist and Hans Keppler who helped with careful reviews of the text. Research supported by ETH Zürich and the Swiss National Science Foundation (grants 20-59544-99 and 200020-100735).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph A. Heinrich.

Additional information

Editorial handling: B. Lehmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinrich, C.A. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: a thermodynamic study. Miner Deposita 39, 864–889 (2005). https://doi.org/10.1007/s00126-004-0461-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-004-0461-9

Keywords

Navigation