Skip to main content

Advertisement

Log in

β-Arrestin2 plays a key role in the modulation of the pancreatic beta cell mass in mice

  • Article
  • Published:
Diabetologia Aims and scope Submit manuscript

Abstract

Aims/hypothesis

Beta cell failure due to progressive secretory dysfunction and limited expansion of beta cell mass is a key feature of type 2 diabetes. Beta cell function and mass are controlled by glucose and hormones/neurotransmitters that activate G protein-coupled receptors or receptor tyrosine kinases. We have investigated the role of β-arrestin (ARRB)2, a scaffold protein known to modulate such receptor signalling, in the modulation of beta cell function and mass, with a specific interest in glucagon-like peptide-1 (GLP-1), muscarinic and insulin receptors.

Methods

β-arrestin2-knockout mice and their wild-type littermates were fed a normal or a high-fat diet (HFD). Glucose tolerance, insulin sensitivity and insulin secretion were assessed in vivo. Beta cell mass was evaluated in pancreatic sections. Free cytosolic [Ca2+] and insulin secretion were determined using perifused islets. The insulin signalling pathway was evaluated by western blotting.

Results

Arrb2-knockout mice exhibited impaired glucose tolerance and insulin secretion in vivo, but normal insulin sensitivity compared with wild type. Surprisingly, the absence of ARRB2 did not affect glucose-stimulated insulin secretion or GLP-1- and acetylcholine-mediated amplifications from perifused islets, but it decreased the islet insulin content and beta cell mass. Additionally, there was no compensatory beta cell mass expansion through proliferation in response to the HFD. Furthermore, Arrb2 deletion altered the islet insulin signalling pathway.

Conclusions/interpretation

ARRB2 is unlikely to be involved in the regulation of insulin secretion, but it is required for beta cell mass plasticity. Additionally, we provide new insights into the mechanisms involved in insulin signalling in beta cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACh:

Acetylcholine

ARRB:

β-Arrestin

AU:

Arbitrary units

[Ca2+]c :

Free cytosolic Ca2+ concentration

FOXO1:

Forkhead box O1

GIPR:

Gastric inhibitory polypeptide receptor

GLP-1R:

Glucagon-like peptide-1 receptor

GPCR:

G protein-coupled receptor

GSIS:

Glucose-stimulated insulin secretion

GSK3:

Glycogen synthase kinase 3

H&E:

Haematoxylin and eosin

HFD:

High-fat diet

IR:

Insulin receptor

ND:

Normal diet

PDX1:

Pancreas/duodenum homeobox protein 1

PI3K:

Phosphatidylinositol 3-kinase

RTK:

Receptor tyrosine kinase

References

  1. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110

    Article  CAS  PubMed  Google Scholar 

  2. Prentki M, Nolan CJ (2006) Islet beta cell failure in type 2 diabetes. J Clin Invest 116:1802–1812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Weir GC, Bonner-Weir S (2013) Islet beta cell mass in diabetes and how it relates to function, birth, and death. Ann NY Acad Sci 1281:92–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Ahren B (2009) Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes. Nat Rev Drug Discov 8:369–385

    Article  CAS  PubMed  Google Scholar 

  5. Goldfine AB, Kulkarni RN (2012) Modulation of beta-cell function: a translational journey from the bench to the bedside. Diabetes Obes Metab 14(Suppl 3):152–160

    Article  CAS  PubMed  Google Scholar 

  6. Gilon P, Henquin JC (2001) Mechanisms and physiological significance of the cholinergic control of pancreatic beta-cell function. Endocr Rev 22:565–604

    CAS  PubMed  Google Scholar 

  7. Thorens B (2011) Brain glucose sensing and neural regulation of insulin and glucagon secretion. Diabetes Obes Metab 13(Suppl 1):82–88

    Article  CAS  PubMed  Google Scholar 

  8. Campbell JE, Drucker DJ (2013) Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab 17:819–837

    Article  CAS  PubMed  Google Scholar 

  9. Gautam D, Han SJ, Duttaroy A et al (2007) Role of the M3 muscarinic acetylcholine receptor in beta-cell function and glucose homeostasis. Diabetes Obes Metab 9(Suppl 2):158–169

    Article  PubMed  Google Scholar 

  10. Leibiger IB, Leibiger B, Berggren PO (2008) Insulin signaling in the pancreatic beta-cell. Annu Rev Nutr 28:233–251

    Article  CAS  PubMed  Google Scholar 

  11. Assmann A, Hinault C, Kulkarni RN (2009) Growth factor control of pancreatic islet regeneration and function. Pediatr Diabetes 10:14–32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Braun M, Ramracheya R, Rorsman P (2012) Autocrine regulation of insulin secretion. Diabetes Obes Metab 14(Suppl 3):143–151

    Article  CAS  PubMed  Google Scholar 

  13. Elghazi L, Bernal-Mizrachi E (2009) Akt and PTEN: beta-cell mass and pancreas plasticity. Trends Endocrinol Metab 20:243–251

    Article  CAS  PubMed  Google Scholar 

  14. Kovacs JJ, Hara MR, Davenport CL, Kim J, Lefkowitz RJ (2009) Arrestin development: emerging roles for beta-arrestins in developmental signaling pathways. Dev Cell 17:443–458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Lefkowitz RJ, Shenoy SK (2005) Transduction of receptor signals by beta-arrestins. Science 308:512–517

    Article  CAS  PubMed  Google Scholar 

  16. Luttrell LM, Gesty-Palmer D (2010) Beyond desensitization: physiological relevance of arrestin-dependent signaling. Pharmacol Rev 62:305–330

    Article  CAS  PubMed  Google Scholar 

  17. DeWire SM, Ahn S, Lefkowitz RJ, Shenoy SK (2007) Beta-arrestins and cell signaling. Annu Rev Physiol 69:483–510

    Article  CAS  PubMed  Google Scholar 

  18. Whalen EJ, Rajagopal S, Lefkowitz RJ (2011) Therapeutic potential of beta-arrestin- and G protein-biased agonists. Trends Mol Med 17:126–139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. DeFea KA (2011) Beta-arrestins as regulators of signal termination and transduction: how do they determine what to scaffold? Cell Signal 23:621–629

    Article  CAS  PubMed  Google Scholar 

  20. Hupfeld CJ, Olefsky JM (2007) Regulation of receptor tyrosine kinase signaling by GRKs and beta-arrestins. Annu Rev Physiol 69:561–577

    Article  CAS  PubMed  Google Scholar 

  21. Luan B, Zhao J, Wu H et al (2009) Deficiency of a beta-arrestin-2 signal complex contributes to insulin resistance. Nature 457:1146–1149

    Article  CAS  PubMed  Google Scholar 

  22. Quoyer J, Longuet C, Broca C et al (2010) GLP-1 mediates antiapoptotic effect by phosphorylating Bad through a beta-arrestin 1-mediated ERK1/2 activation in pancreatic beta-cells. J Biol Chem 285:1989–2002

    Article  CAS  PubMed  Google Scholar 

  23. Sonoda N, Imamura T, Yoshizaki T, Babendure JL, Lu JC, Olefsky JM (2008) Beta-Arrestin-1 mediates glucagon-like peptide-1 signaling to insulin secretion in cultured pancreatic beta cells. Proc Natl Acad Sci U S A 105:6614–6619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Talbot J, Joly E, Prentki M, Buteau J (2012) beta-Arrestin1 mediated recruitment of c-Src underlies the proliferative action of glucagon-like peptide-1 in pancreatic beta INS832/13 cells. Mol Cell Endocrinol 354:65–70

    Article  Google Scholar 

  25. Broca C, Quoyer J, Costes S et al (2009) beta-Arrestin 1 is required for PAC1 receptor-mediated potentiation of long-lasting ERK1/2 activation by glucose in pancreatic beta-cells. J Biol Chem 284:4332–4342

    Article  CAS  PubMed  Google Scholar 

  26. Kong KC, Butcher AJ, McWilliams P et al (2010) M3-muscarinic receptor promotes insulin release via receptor phosphorylation/arrestin-dependent activation of protein kinase D1. Proc Natl Acad Sci U S A 107:21181–21186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Dalle S, Ravier MA, Bertrand G (2011) Emerging roles for beta-arrestin-1 in the control of the pancreatic beta-cell function and mass: new therapeutic strategies and consequences for drug screening. Cell Signal 23:522–528

    Article  CAS  PubMed  Google Scholar 

  28. Zhang M, Zhu Y, Mu K et al (2013) Loss of beta-arrestin2 mediates pancreatic-islet dysfunction in mice. Biochem Biophys Res Commun 435:345–349

    Article  CAS  PubMed  Google Scholar 

  29. Bertrand G, Ishiyama N, Nenquin M, Ravier MA, Henquin JC (2002) The elevation of glutamate content and the amplification of insulin secretion in glucose-stimulated pancreatic islets are not causally related. J Biol Chem 277:32883–32891

    Article  CAS  PubMed  Google Scholar 

  30. Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444:840–846

    Article  CAS  PubMed  Google Scholar 

  31. Sachdeva MM, Stoffers DA (2009) Minireview: meeting the demand for insulin: molecular mechanisms of adaptive postnatal beta-cell mass expansion. Mol Endocrinol 23:747–758

    Article  CAS  PubMed  Google Scholar 

  32. Syme CA, Zhang L, Bisello A (2006) Caveolin-1 regulates cellular trafficking and function of the glucagon-like peptide 1 receptor. Mol Endocrinol 20:3400–3411

    Article  CAS  PubMed  Google Scholar 

  33. Jorgensen R, Martini L, Schwartz TW, Elling CE (2005) Characterization of glucagon-like peptide-1 receptor beta-arrestin 2 interaction: a high-affinity receptor phenotype. Mol Endocrinol 19:812–823

    Article  CAS  PubMed  Google Scholar 

  34. Jorgensen R, Kubale V, Vrecl M, Schwartz TW, Elling CE (2007) Oxyntomodulin differentially affects glucagon-like peptide-1 receptor beta-arrestin recruitment and signaling through Galpha(s). J Pharmacol Exp Ther 322:148–154

    Article  CAS  PubMed  Google Scholar 

  35. Schelshorn D, Joly F, Mutel S, Hampe C, Breton B, Mutel V, Lutjens R (2012) Lateral allosterism in the glucagon receptor family: glucagon-like peptide 1 induces G-protein-coupled receptor heteromer formation. Mol Pharmacol 81:309–318

    Article  CAS  PubMed  Google Scholar 

  36. Alejandro EU, Lim GE, Mehran AE et al (2011) Pancreatic beta-cell Raf-1 is required for glucose tolerance, insulin secretion, and insulin 2 transcription. FASEB J 25:3884–3895

    Article  CAS  PubMed  Google Scholar 

  37. Gu C, Stein GH, Pan N et al (2010) Pancreatic beta cells require NeuroD to achieve and maintain functional maturity. Cell Metab 11:298–310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Meur G, Qian Q, da Silva XG et al (2011) Nucleo-cytosolic shuttling of FoxO1 directly regulates mouse Ins2 but not Ins1 gene expression in pancreatic beta cells (MIN6). J Biol Chem 286:13647–13656

    Article  CAS  PubMed  Google Scholar 

  39. Lee YC, Nielsen JH (2009) Regulation of beta cell replication. Mol Cell Endocrinol 297:18–27

    Article  CAS  PubMed  Google Scholar 

  40. Gunasekaran U, Hudgens CW, Wright BT, Maulis MF, Gannon M (2012) Differential regulation of embryonic and adult beta cell replication. Cell Cycle 11:2431–2442

    Article  CAS  PubMed  Google Scholar 

  41. Thorens B (2013) The required beta cell research for improving treatment of type 2 diabetes. J Intern Med 274:203–214

    Article  CAS  PubMed  Google Scholar 

  42. Imai J, Katagiri H, Yamada T et al (2008) Regulation of pancreatic beta cell mass by neuronal signals from the liver. Science 322:1250–1254

    Article  CAS  PubMed  Google Scholar 

  43. El Ouaamari A, Kawamori D, Dirice E et al (2013) Liver-derived systemic factors drive beta cell hyperplasia in insulin-resistant states. Cell Rep 3:401–410

    Article  PubMed Central  PubMed  Google Scholar 

  44. Yi P, Park JS, Melton DA (2013) Betatrophin: a hormone that controls pancreatic beta cell proliferation. Cell 153:747–758

    Article  CAS  PubMed  Google Scholar 

  45. Buzzi F, Xu L, Zuellig RA et al (2010) Differential effects of protein kinase B/Akt isoforms on glucose homeostasis and islet mass. Mol Cell Biol 30:601–612

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101

    Article  CAS  PubMed  Google Scholar 

  47. Kitamura T, Nakae J, Kitamura Y et al (2002) The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic beta cell growth. J Clin Invest 110:1839–1847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Liu Y, Tanabe K, Baronnier D, Patel S, Woodgett J, Cras-Meneur C, Permutt MA (2010) Conditional ablation of Gsk-3beta in islet beta cells results in expanded mass and resistance to fat feeding-induced diabetes in mice. Diabetologia 53:2600–2610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Liu Z, Tanabe K, Bernal-Mizrachi E, Permutt MA (2008) Mice with beta cell overexpression of glycogen synthase kinase-3beta have reduced beta cell mass and proliferation. Diabetologia 51:623–631

    Article  CAS  PubMed  Google Scholar 

  50. Zurita E, Chagoyen M, Cantero M et al (2011) Genetic polymorphisms among C57BL/6 mouse inbred strains. Transgenic Res 20:481–489

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank R. J. Lefkowitz (Duke University Medical Center, Durham, USA) for kindly providing Arrb2 −/− mice, C. Bonnans (Institut de Génomique Fonctionnelle, Montpellier, France) for supplying and genotyping the animals, and L. Forichon and F. Rubio (Institut de Génomique Fonctionnelle, Montpellier, France) for technical assistance with the animals. The authors thank colleagues at the Reseau Histologie Expérimentale de Montpellier (Institut de Recherche en Cancérologie de Montpellier, Montpellier, France) and Montpellier Rio Imaging facilities (Institut des Neurosciences de Montpellier, Montpellier, France) for technical assistance.

Funding

This work was supported by the Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Fondation pour la Recherche Médicale (grant DRM20101220453), research allocation from SFD-ALFEDIAM.

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.

Contribution statement

MAR contributed to the design, the acquisition, analysis and interpretation of the data and to the drafting/revision of the article. ML, JR, NL, AV, NP, MMR, SD and JB contributed to the acquisition and analysis of the data and to the revision of the manuscript. GB contributed to the conception and design of the study, the acquisition, analysis and interpretation of data and to drafting/revising the manuscript. All authors approved the final version to be published.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyslaine Bertrand.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Fig. 1

(PDF 982 kb)

ESM Fig. 2

(PDF 826 kb)

ESM Fig. 3

(PDF 784 kb)

ESM Table 1

(PDF 135 kb)

ESM Table 2

(PDF 158 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravier, M.A., Leduc, M., Richard, J. et al. β-Arrestin2 plays a key role in the modulation of the pancreatic beta cell mass in mice. Diabetologia 57, 532–541 (2014). https://doi.org/10.1007/s00125-013-3130-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00125-013-3130-7

Keywords

Navigation