Skip to main content

Methods to Study Roles of β-Arrestins in the Regulation of Pancreatic β-Cell Function

  • Protocol
  • First Online:
Beta-Arrestins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1957))

Abstract

Novel findings reveal important functional roles for β-arrestin 1 and β-arrestin 2 in the regulation of insulin secretion, β-cell survival, and β-cell mass plasticity not only by glucose but also by G-protein-coupled receptors, such as the glucagon-like peptide-1 (GLP-1) and the pituitary adenylate cyclase-activating polypeptide (PACAP) receptors or GPR40, or tyrosine kinase receptors, such as the insulin receptor. Here, we describe experimental protocols to knock down β-arrestins by small interference RNA, to follow subcellular localization of β-arrestins in the cytosol and nucleus of the insulinoma INS-1E rat pancreatic β-cell line, and to analyze β-arrestin protein expression by Western blot using INS-1E cells and isolated mouse or human pancreatic islets. We also provide details on how to genotype β-arrestin 2 knockout (Arrb2−/−) mice and to evaluate β-arrestin-mediated roles in β-cell mass plasticity and β-cell signaling using immunocytochemistry on pancreatic sections or on primary dispersed β-cells from wild-type mice and Arrb2−/− mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DeFronzo RA (1988) Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 37(6):667–687

    Article  CAS  PubMed  Google Scholar 

  2. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52(1):102–110

    Article  CAS  PubMed  Google Scholar 

  3. Leibowitz G, Kaiser N, Cerasi E (2009) Balancing needs and means: the dilemma of the beta-cell in the modern world. Diabetes Obes Metab 11(Suppl 4):1–9

    Article  CAS  PubMed  Google Scholar 

  4. Rahier J, Guiot Y, Goebbels RM, Sempoux C, Henquin JC (2008) Pancreatic beta-cell mass in European subjects with type 2 diabetes. Diabetes Obes Metab 10(Suppl 4):32–42

    Article  PubMed  Google Scholar 

  5. Dalle S, Ravier MA, Bertrand G (2011) Emerging roles for beta-arrestin-1 in the control of the pancreatic beta-cell function and mass: new therapeutic strategies and consequences for drug screening. Cell Signal 23(3):522–528

    Article  CAS  PubMed  Google Scholar 

  6. Kong KC, Butcher AJ, McWilliams P, Jones D, Wess J, Hamdan FF, Werry T, Rosethorne EM, Charlton SJ, Munson SE, Cragg HA, Smart AD, Tobin AB (2010) M3-muscarinic receptor promotes insulin release via receptor phosphorylation/arrestin-dependent activation of protein kinase D1. Proc Natl Acad Sci U S A 107(49):21181–21186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lin Z, Zhao Y, Song L, Mu K, Zhang M, Liu H, Li X, Zhao J, Wang C, Jia W (2016) Deletion of beta-Arrestin2 in mice limited pancreatic beta-cell expansion under metabolic stress through activation of JNK pathway. Mol Med 22:74–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Quoyer J, Longuet C, Broca C, Linck N, Costes S, Varin E, Bockaert J, Bertrand G, Dalle S (2010) GLP-1 mediates antiapoptotic effect by phosphorylating bad through a beta-arrestin 1-mediated ERK1/2 activation in pancreatic beta-cells. J Biol Chem 285(3):1989–2002

    Article  CAS  PubMed  Google Scholar 

  9. Ravier MA, Leduc M, Richard J, Linck N, Varrault A, Pirot N, Roussel MM, Bockaert J, Dalle S, Bertrand G (2014) Beta-Arrestin2 plays a key role in the modulation of the pancreatic beta cell mass in mice. Diabetologia 57(3):532–541

    Article  CAS  PubMed  Google Scholar 

  10. Sonoda N, Imamura T, Yoshizaki T, Babendure JL, Lu JC, Olefsky JM (2008) Beta-Arrestin-1 mediates glucagon-like peptide-1 signaling to insulin secretion in cultured pancreatic beta cells. Proc Natl Acad Sci U S A 105(18):6614–6619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Talbot J, Joly E, Prentki M, Buteau J (2012) Beta-Arrestin1 mediated recruitment of c-Src underlies the proliferative action of glucagon-like peptide-1 in pancreatic beta INS832/13 cells. Mol Cell Endocrinol 354(1–2):65–70

    Article  Google Scholar 

  12. Zhang M, Zhu Y, Mu K, Li L, Lu J, Zhao J, Huang X, Wang C, Jia W (2013) Loss of beta-arrestin2 mediates pancreatic-islet dysfunction in mice. Biochem Biophys Res Commun 435(3):345–349

    Article  CAS  PubMed  Google Scholar 

  13. Zhu L, Almaca J, Dadi PK, Hong H, Sakamoto W, Rossi M, Lee RJ, Vierra NC, Lu H, Cui Y, McMillin SM, Perry NA, Gurevich VV, Lee A, Kuo B, Leapman RD, Matschinsky FM, Doliba NM, Urs NM, Caron MG, Jacobson DA, Caicedo A, Wess J (2017) Beta-arrestin-2 is an essential regulator of pancreatic beta-cell function under physiological and pathophysiological conditions. Nat Commun 8:14295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mancini AD, Bertrand G, Vivot K, Carpentier E, Tremblay C, Ghislain J, Bouvier M, Poitout V (2015) Beta-Arrestin recruitment and biased agonism at free fatty acid receptor 1. J Biol Chem 290(34):21131–21140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Broca C, Quoyer J, Costes S, Linck N, Varrault A, Deffayet PM, Bockaert J, Dalle S, Bertrand G (2009) Beta-Arrestin 1 is required for PAC1 receptor-mediated potentiation of long-lasting ERK1/2 activation by glucose in pancreatic beta-cells. J Biol Chem 284(7):4332–4342

    Article  CAS  PubMed  Google Scholar 

  16. Ravier MA, Rutter GA (2010) Isolation and culture of mouse pancreatic islets for ex vivo imaging studies with trappable or recombinant fluorescent probes. Methods Mol Biol 633:171–184

    Article  CAS  PubMed  Google Scholar 

  17. Rivera JF, Costes S, Gurlo T, Glabe CG, Butler PC (2014) Autophagy defends pancreatic beta cells from human islet amyloid polypeptide-induced toxicity. J Clin Invest 124(8):3489–3500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Michele Leduc JR, Costes S, Muller D, Varrault A, Compan V, Mathieu J, Tanti J-F, Pagès G, Pouyssegur J, Bertrand G, Dalle S, Ravier MA (2017) ERK1 is dispensable for mouse pancreatic beta cell function but is necessary for glucose-induced full activation of MSK1 and CREB. Diabetologia 60(10):1999–2010

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Dalle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dalle, S., Costes, S., Bertrand, G., Ravier, M.A. (2019). Methods to Study Roles of β-Arrestins in the Regulation of Pancreatic β-Cell Function. In: Scott, M., Laporte, S. (eds) Beta-Arrestins. Methods in Molecular Biology, vol 1957. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9158-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9158-7_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9157-0

  • Online ISBN: 978-1-4939-9158-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics