Skip to main content
Log in

Linkage and association study discovered loci and candidate genes for glycinin and β-conglycinin in soybean (Glycine max L. Merr.)

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Linkage mapping and GWAS identified 67 QTLs related to soybean glycinin, β-conglycinin and relevant traits. Polymorphisms of the candidate gene Gy1 promoter were associated with the glycinin content in soybean.

Abstract

The major components of storage proteins in soybean seeds are glycinin and β-conglycinin, which play important roles in determining protein nutrition and soy food processing properties. Increasing the protein content while improving the ratio of glycinin to β-conglycinin is substantially important for soybean protein improvement. To investigate the genetic mechanism of storage protein subunits, 184 recombinant inbred lines (RILs) derived from a cross of Kefeng No. 1 and Nannong 1138-2 and 211 diverse soybean cultivars were used to detect loci related to glycinin (11S), β-conglycinin (7S), the sum of glycinin and β-conglycinin (SGC), and the ratio of glycinin to β-conglycinin (RGC). Sixty-seven QTLs and 11 hot genomic regions were identified as affecting the four traits. One genetic region (q10-1) on chromosome 10 was associated with multiple traits by both linkage and association analysis. Eight genes in 11 hot genomic regions might be related to soybean protein subunit. The candidate gene analysis showed that polymorphisms in Gy1 promoters were significantly correlated with the 11S content. The QTLs and candidate genes identified in the present study allow for further understanding the genetic basis of 11S and 7S regulation and provide useful information for marker-assisted selection (MAS) in soybean quality improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  CAS  PubMed  Google Scholar 

  • Beilinson V, Chen Z, Shoemaker R, Fischer R, Goldberg R, Nielsen N (2002) Genomic organization of glycinin genes in soybean. Theor Appl Genet 104:1132–1140

    Article  CAS  PubMed  Google Scholar 

  • Boehm J Jr, Nguyen V, Tashiro R, Anderson D, Shi C, Wu X, Woodrow L, Yu K, Cui Y, Li Z (2018) Genetic mapping and validation of the loci controlling 7S α’ and 11S A-type storage protein subunits in soybean [Glycine max (L.) Merr.]. Theor Appl Genet 131:659–671

    Article  CAS  PubMed  Google Scholar 

  • Bonner ER, Cahoon RE, Knapke SM, Jez JM (2005) Molecular basis of cysteine biosynthesis in plants: structural and functional analysis of O-acetylserine sulfhydrylase from Arabidopsis thaliana. J Biol Chem 280:38803–38813

    Article  CAS  PubMed  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Capaldi FR, Gratão PL, Reis AR, Lima LW, Azevedo RA (2015) Sulfur metabolism and stress defense responses in plants. Trop Plant Biol 8:60–73

    Article  CAS  Google Scholar 

  • Carter AM, Tegeder M (2016) Increasing nitrogen fixation and seed development in soybean requires complex adjustments of nodule nitrogen metabolism and partitioning processes. Curr Biol 26:2044–2051

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary J, Patil GB, Sonah H, Deshmukh RK, Vuong TD, Valliyodan B, Nguyen HT (2015) Expanding omics resources for improvement of soybean seed composition traits. Front Plant Sci 6:1021

    Article  PubMed  PubMed Central  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickinson CD, Evans RP, Nielsen NC (1988) RY repeats are conserved in the 5’-flanking regions of legume seed-protein genes. Nucleic Acids Res 16:371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dreßen A, Hilberath T, Mackfeld U, Rudat J, Pohl M (2017) Phenylalanine ammonia lyase from Arabidopsis thaliana (AtPAL2): A potent MIO-enzyme for the synthesis of non-canonical aromatic alpha-amino acids.: Part II: Application in different reactor concepts for the production of (S)-2-chloro-phenylalanine. J Biotechnol 258:158–166

    Article  PubMed  CAS  Google Scholar 

  • Eskandari M, Cober ER, Rajcan I (2013) Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield. Theor Appl Genet 126:1677–1687

    Article  CAS  PubMed  Google Scholar 

  • Fischer RL, Goldberg RB (1982) Structure and flanking regions of soybean seed protein genes. Cell 29:651–660

    Article  CAS  PubMed  Google Scholar 

  • Francois JA, Kumaran S, Jez JM (2006) Structural basis for interaction of O-acetylserine sulfhydrylase and serine acetyltransferase in the Arabidopsis cysteine synthase complex. Plant Cell 18:3647–3655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grant D, Nelson RT, Cannon SB, Shoemaker RC (2010) SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res 38:843–846

    Article  CAS  Google Scholar 

  • Harada JJ, Barker SJ, Goldberg RB (1989) Soybean β-conglycinin genes are clustered in several DNA regions and are regulated by transcriptional and posttranscriptional processes. Plant Cell 1:415–425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi M, Kitamura K, Harada K (2009) Genetic mapping of Cgdef gene controlling accumulation of 7S globulin (β-conglycinin) subunits in soybean seeds. J Hered 100:802–806

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Zhang H, Kan G, Ma D, Zhang D, Shi G, Hong D, Zhang G, Yu D (2013) Determination of the genetic architecture of seed size and shape via linkage and association analysis in soybean (Glycine max L. Merr.). Genetica 141:247–254

    Article  CAS  PubMed  Google Scholar 

  • Hu D, Kan G, Hu W, Li Y, Hao D, Li X, Yang H, Yang Z, He X, Huang F, Yu D (2019) Identification of loci and candidate genes responsible for Pod dehiscence in soybean via genome-wide association analysis across multiple environments. Front Plant Sci 10:811

    Article  PubMed  PubMed Central  Google Scholar 

  • Iida A, Nagasawa A, Oeda K (1995) Positive and negative cis-regulatory regions in the soybean glycinin promoter identified by quantitative transient gene expression. Plant Cell Rep 14:539–544

    Article  CAS  PubMed  Google Scholar 

  • Itoh Y, Kitamura Y, Fukazawa C (1994) The glycinin box: a soybean embryo factor binding motif within the quantitative regulatory region of the 11S seed storage globulin promoter. Mol Gen Genet 243:353–357

    Article  CAS  PubMed  Google Scholar 

  • James AT, Yang A (2016) Interactions of protein content and globulin subunit composition of soybean proteins in relation to tofu gel properties. Food Chem 194:284–289

    Article  CAS  PubMed  Google Scholar 

  • Jones SI, Vodkin LO, Matteo P (2013) Using RNA-Seq to profile soybean seed development from fertilization to maturity. PLoS ONE 8:e59270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabelka EA, Diers BW, Fehr WR, LeRoy AR, Baianu IC, You T, Neece DJ, Nelson RL (2004) Putative alleles for increased yield from soybean plant introductions. Crop Sci 44:784–791

    Article  Google Scholar 

  • Kim Y, Wicker L (2005) Soybean cultivars impact quality and function of soymilk and tofu. J Sci Food Agric 85:2514–2518

    Article  CAS  Google Scholar 

  • Kim H, Hirai MY, Hayashi H, Chino M, Naito S, Fujiwara T (1999) Role of O-acetyl-L-serine in the coordinated regulation of the expression of a soybean seed storage-protein gene by sulfur and nitrogen nutrition. Planta 209:282–289

    Article  CAS  PubMed  Google Scholar 

  • King KE, Peiffer GA, Reddy M, Lauter N, Lin SF, Cianzio S, Shoemaker RC (2013) Mapping of iron and zinc quantitative trait loci in soybean for association to iron deficiency chlorosis resistance. J Plant Nutr 36:2132–2153

    Article  CAS  Google Scholar 

  • Kinsella JE (1979) Functional properties of soy proteins. J Am Oil Chem Soc 56:242–258

    Article  CAS  Google Scholar 

  • Kwanyuen P, Pantalone VR, Burton JW, Wilson RF (1997) A new approach to genetic alteration of soybean protein composition and quality. J Am Oil Chem Soc 74:983–987

    Article  CAS  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SH, Bailey MA, Mian MAR, Carter TE, Shipe ER, Ashley DA, Parrott WA, Hussey RS, Boerma HR (1996) RFLP loci associated with soybean seed protein and oil content across populations and locations. Theor Appl Genet 93:649–657

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Ahn JH, Cha YS, Yun DW, Lee MC, Ko JC, Lee KS, Eun MY (2007) Mapping QTLs related to salinity tolerance of rice at the young seedling stage. Plant Breed 126:43–46

    Article  Google Scholar 

  • L’Hocine L, Boye JI (2007) Allergenicity of soybean: new developments in identification of allergenic proteins, cross-reactivities and hypoallergenization technologies. Crit Rev Food Sci Nutr 47:127–143

    Article  CAS  PubMed  Google Scholar 

  • Li C, Zhang YM (2011) Molecular evolution of glycinin and β-conglycinin gene families in soybean (Glycine max L. Merr.). Heredity (Edinb) 106:633–641

    Article  CAS  Google Scholar 

  • Li YH, Shi XH, Li HH, Reif JC, Wang JJ, Liu ZX, He S, Yu BS, Qiu LJ (2016) Dissecting the genetic basis of resistance to soybean cyst nematode combining linkage and association mapping. Plant Genome 9:0020

    Article  Google Scholar 

  • Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, Gore MA, Buckler ES, Zhang Z (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28:2397–2399

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Dong L, Fang C, Liu S, Kong L, Cheng Q, Chen L, Su T, Nan H, Zhang D, Zhang L, Wang Z, Yang Y, Yu D, Liu X, Yang Q, Lin X, Tang Y, Zhao X, Yang X, Tian C, Xie Q, Li X, Yuan X, Tian Z, Liu B, Weller JL, Kong F (2020) Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nat Genet 52:428–436

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Sun P, He P, Han P, Wang J, Qiao S, Li D (2010) Development of monoclonal antibodies and a competitive ELISA detection method for glycinin, an allergen in soybean. Food Chem 121:546–551

    Article  CAS  Google Scholar 

  • Ma Y, Kan G, Zhang X, Wang Y, Zhang W, Du H, Yu D (2016) Quantitative trait loci (QTL) mapping for glycinin and β-conglycinin contents in soybean (Glycine max L. Merr.). J Agric Food Chem 64:3473–3483

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Guan Z, Zhang Z, Zhang X, Zhang Y, Zou C, Peng H, Pan G, Lee M, Shen Y, Lübberstedt T (2018) Identification of quantitative trait loci for leaf-related traits in an IBM Syn10 DH maize population across three environments. Plant Breed 137:127–138

    Article  CAS  Google Scholar 

  • Ma Y, Ma W, Hu D, Zhang X, Yuan W, He X, Kan G, Yu D (2019) QTL mapping for protein and sulfur-containing amino acid contents using a high-density Bin-map in soybean (Glycine max L. Merr.). J Agric Food Chem 67:12313–12321

    Article  CAS  PubMed  Google Scholar 

  • Manjarrez-Sandoval P, Carter TE, Webb DM, Burton JW (1997) RFLP genetic similarity estimates and coefficient of parentage as genetic variance predictors for soybean yield. Crop Sci 37:698–703

    Article  Google Scholar 

  • Mao T, Jiang Z, Han Y, Teng W, Zhao X, Li W, Morris B (2013) Identification of quantitative trait loci underlying seed protein and oil contents of soybean across multi-genetic backgrounds and environments. Plant Breed 132:630–641

    Article  CAS  Google Scholar 

  • Miyashita Y, Dolferus R, Ismond KP, Good AG (2007) Alanine aminotransferase catalyses the breakdown of alanine after hypoxia in Arabidopsis thaliana. Plant J 49:1108–1121

    Article  CAS  PubMed  Google Scholar 

  • Mujoo R, Trinh DT, Ng PKW (2003) Characterization of storage proteins in different soybean varieties and their relationship to tofu yield and texture. Food Chem 82:265–273

    Article  CAS  Google Scholar 

  • Naito S, Hirai MY, Chino M, Komeda Y (1994) Expression of a soybean (Glycine max [L.] Merr.) seed storage protein gene in transgenic Arabidopsis thaliana and its response to nutritional stress and to abscisic acid mutations. Plant Physiol 104:497–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakasathien S, Israel DW, Wilson RF, Kwanyuen P (2000) Regulation of seed protein concentration in soybean by supra-optimal nitrogen supply. Crop Sci 40:1277–1284

    Article  CAS  Google Scholar 

  • Nielsen N, Dickinson C, Cho T-JH, Thanh VJ, Scallon BL, Fischer R, Sims TN, Drews GB, Goldberg R (1989) Characterization of glycinin gene family in soybean. Plant Cell 1:313–328

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ning H, Zhang C, Yao Y, Yu D (2010) Overexpression of a soybean O-acetylserine (thiol) lyase-encoding gene GmOASTL4 in tobacco increases cysteine levels and enhances tolerance to cadmium stress. Biotechnol Lett 32:557–564

    Article  CAS  PubMed  Google Scholar 

  • Nishinari K, Fang Y, Guo S, Phillips GO (2014) Soy proteins: a review on composition, aggregation and emulsification. Food Hydrocoll 39:301–318

    Article  CAS  Google Scholar 

  • Nyquist WE, Baker RJ (1991) Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci 10:235–322

    Article  Google Scholar 

  • Ogawa T, Tayama E, Kitamura K, Kaizuma N (1989) Genetic improvement of seed storage proteins using three variant alleles of 7S globulin subunits in soybean(Glycine max L.). Japan J Breed 39:137–147

    Article  CAS  Google Scholar 

  • Pan L, He J, Zhao T, Xing G, Wang Y, Yu D, Chen S, Gai J (2018) Efficient QTL detection of flowering date in a soybean RIL population using the novel restricted two-stage multi-locus GWAS procedure. Theor Appl Genet 131:2581–2599

    Article  CAS  PubMed  Google Scholar 

  • Panthee D, Kwanyuen P, Sams CR, West D, Saxton AR, Pantalone V (2004) Quantitative trait loci for β-conglycinin (7S) and glycinin (11S) fractions of soybean storage protein. J Am Oil Chem Soc 81:1005–1012

    Article  CAS  Google Scholar 

  • Patil G, Mian R, Vuong T, Pantalone V, Song Q, Chen P, Shannon GJ, Carter TC, Nguyen HT (2017) Molecular mapping and genomics of soybean seed protein: a review and perspective for the future. Theor Appl Genet 130:1975–1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng IC, Quass DW, Dayton WR, Allen CE (1984) The physicochemical and functional properties of soybean 11S globulin-a review. Cereal Chem 61:480–490

    CAS  Google Scholar 

  • Phartiyal P, Kim WS, Cahoon RE, Jez JM, Krishnan HB (2008) The role of 5’-adenylylsulfate reductase in the sulfur assimilation pathway of soybean: molecular cloning, kinetic characterization, and gene expression. Phytochemistry 69:356–364

    Article  CAS  PubMed  Google Scholar 

  • Planta J, Xiang X, Leustek T, Messing J (2017) Engineering sulfur storage in maize seed proteins without apparent yield loss. Proc Natl Acad Sci U S A 114:11386–11391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powell JE, Henders AK, McRae AF, Caracella A, Smith S, Wright MJ, Whitfield JB, Dermitzakis ET, Martin NG, Visscher PM, Montgomery GW (2012) The brisbane systems genetics study: genetical genomics meets complex trait genetics. PLoS ONE 7:e35430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinprecht Y, Poysa VW, Yu K, Rajcan I, Ablett GR, Pauls KP (2006) Seed and agronomic QTL in low linolenic acid, lipoxygenase-free soybean (Glycine max (L.) Merrill) germplasm. Genome 49:1510–1527

    Article  CAS  PubMed  Google Scholar 

  • Salvagiotti F, Cassman KG, Specht JE, Walters DT, Weiss A, Dobermann A (2008) Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crops Res 108:1–13

    Article  Google Scholar 

  • Scallon B, Thanh V, Floener L, Nielsen N (1985) Identification and characterization of DNA clones encoding group-II glycinin subunits. Theor Appl Genet 70:510–519

    Article  CAS  PubMed  Google Scholar 

  • Shutov AD, Kakhovskaya IA, Bastrygina AS, Bulmaga VP, Horstmann C, Müntz K (1996) Limited proteolysis of β-conglycinin and glycinin, the 7S and 11S storage globulins from soybean [Glycine max (L.) Merr.]. Structural and evolutionary implications. Eur J Biochem 241:221–228

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Meena M, Kumar D, Dubey AK, Hassan MI (2015) Structural and functional analysis of various globulin proteins from soy seed. Crit Rev Food Sci Nutr 55:1491–1502

    Article  CAS  PubMed  Google Scholar 

  • Song B, Oehrle NW, Liu S, Krishnan HB (2018) Development and characterization of a soybean experimental line lacking the α’ Subunit of β-Conglycinin and G1, G2, and G4 Glycinin. J Agric Food Chem 66:432–439

    Article  CAS  PubMed  Google Scholar 

  • Stanojevic SP, Barac MB, Pesic MB, Vucelic-Radovic BV (2011) Assessment of soy genotype and processing method on quality of soybean tofu. J Agric Food Chem 59:7368–7376

    Article  CAS  PubMed  Google Scholar 

  • Staswick PE, Hermodson MA, Nielsen NC (1984) Identification of the cystines which link the acidic and basic components of the glycinin subunits. J Biol Chem 259:13431–13435

    Article  CAS  PubMed  Google Scholar 

  • Teraishi M, Takahashi M, Hajika M, Matsunaga R, Uematsu Y, Ishimoto M (2001) Suppression of soybean β-conglycinin genes by a dominant gene, Scg-1. Theor Appl Genet 103:1266–1272

    Article  CAS  Google Scholar 

  • Thanh VH, Shibasaki K (1978) Major proteins of soybean seeds. Subunit structure of β-conglycinin. J Agric Food Chem 26:692–695

    Article  Google Scholar 

  • Thumma BR, Naidu BP, Chandra A, Cameron DF, Bahnisch LM, Liu C (2001) Identification of causal relationships among traits related to drought resistance in Stylosanthes scabra using QTL analysis. J Exp Bot 52:203–214

    Article  CAS  PubMed  Google Scholar 

  • Tsubokura Y, Hajika M, Harada K (2006) Molecular markers associated with β-conglycinin deficiency in soybean. Breed Sci 56:113–117

    Article  CAS  Google Scholar 

  • Tsubokura Y, Hajika M, Kanamori H, Xia Z, Watanabe S, Kaga A, Katayose Y, Ishimoto M, Harada K (2012) The β-conglycinin deficiency in wild soybean is associated with the tail-to-tail inverted repeat of the α-subunit genes. Plant Mol Biol 78:301–309

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2005) Windows QTL Cartographer V2·5.

  • Wang D, Ma Y, Yang Y, Liu N, Li C, Song Y, Zhi H (2011) Fine mapping and analyses of RSC8 resistance candidate genes to soybean mosaic virus in soybean. Theor Appl Genet 122:555–565

    Article  PubMed  Google Scholar 

  • Wang J, Liu L, Guo Y, Zhang WY, L, Jin L, Guan R, Liu Z, Wang L, Chang R, Qiu L (2014) A dominant locus, qBSC-1, controls β subunit content of seed storage protein in soybean (Glycine max (L.) Merri.). J Integr Agric 13:1854–1864

    Article  CAS  Google Scholar 

  • Wang J, Chu S, Zhang H, Zhu Y, Cheng H, Yu D (2016) Development and application of a novel genome-wide SNP array reveals domestication history in soybean. Sci Rep 6:20728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warrington CV, Abdel-Haleem H, Hyten DL, Cregan PB, Orf JH, Killam AS, Bajjalieh N, Li Z, Boerma HR (2015) QTL for seed protein and amino acids in the Benning × Danbaekkong soybean population. Theor Appl Genet 128:839–850

    Article  CAS  PubMed  Google Scholar 

  • Wei J, Luo G, Zhang L, Wang X, Dong Z (2009) Physiological parameters of super-high yielding soybean cultivar Zhonghuang 35. Acta Agronomica Sinica 35(3):506–511

    Article  Google Scholar 

  • Yagasaki K, Takagi T, Sakai M, Kitamura K (1997) Biochemical characterization of soybean protein consisting of different subunits of glycinin. J Agric Food Chem 45:656–660

    Article  CAS  Google Scholar 

  • Yan Q, Si J, Cui X, Peng H, Jing M, Chen X, Xing H, Dou D (2019) GmDAD1, a conserved defender against cell death 1 (DAD1) from soybean, positively regulates plant resistance against phytophthora pathogens. Front Plant Sci 10:107

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshino M, Kanazawa A, Tsutsumi K-i, Nakamura I, Takahashi K, Shimamoto Y (2002) Structural variation around the gene encoding the α subunit of soybean β-conglycinin and correlation with the expression of the α subunit. Breed Sci 52:285–292

    Article  CAS  Google Scholar 

  • You J, Li D, Qiao S, Wang Z, He P, Ou D, Dong B (2008) Development of a monoclonal antibody-based competitive ELISA for detection of β-conglycinin, an allergen from soybean. Food Chem 106:352–360

    Article  CAS  Google Scholar 

  • Youssef IMI, Beineke A, Rohn K, Kamphues J (2011) Effects of high dietary levels of soybean meal and its constituents (potassium, oligosaccharides) on foot pad dermatitis in growing turkeys housed on dry and wet litter. Arch Anim Nutr 65:148–162

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Meng Q, Zhang M, Huang F, Gai J, Yu D (2008) Characterization of O-Acetylserine(Thiol)Lyase-Encoding Genes Reveals Their Distinct but Cooperative Expression in Cysteine Synthesis of Soybean [Glycine max (L.) Merr.]. Plant Mol Biol Report 26:277

  • Zhang D, Lu H, Chu S, Zhang H, Zhang H, Yang Y, Li H, Yu D (2017a) The genetic architecture of water-soluble protein content and its genetic relationship to total protein content in soybean. Sci Rep 7:5053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Dai L, Liu Y, Zhang Y, Wang S (2017b) Identifying novel fruit-related genes in Arabidopsis thaliana based on the random walk with restart algorithm. PLoS ONE 12:e0177017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao X, Dong H, Chang H, Zhao J, Teng W, Qiu L, Li W, Han Y (2019) Genome wide association mapping and candidate gene analysis for hundred seed weight in soybean [Glycine max (L.) Merrill]. BMC Genomics 20:648

Download references

Acknowledgements

This study was supported in part by the Ministry of Science and Technology (2017YFE0111000 and 2016YFD0100504), the Natural Science Foundation of Jiangsu Province (BK20191313), the Fundamental Research Funds for the Central Universities (KYZ201705), the National Natural Science Foundation of China (31571688, 31871649, and 31671715), the Ministry of Agriculture (2016ZX08004-003 and 2016ZX08009003-004), and EUCLEG Horizon 2020 of European Union (No.727312). Part of the analysis was performed at the high-performance computing platform of Bioinformatics Center of Nanjing Agricultural University.

Author information

Authors and Affiliations

Authors

Contributions

GK, DY, and SZ designed the research, and SZ and DH performed the research. SZ, YM, and HL analyzed the data, and SZ wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Guizhen Kan or Deyue Yu.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Communicated by Lixi Jiang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Du, H., Ma, Y. et al. Linkage and association study discovered loci and candidate genes for glycinin and β-conglycinin in soybean (Glycine max L. Merr.). Theor Appl Genet 134, 1201–1215 (2021). https://doi.org/10.1007/s00122-021-03766-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-021-03766-6

Navigation