Skip to main content

Advertisement

Log in

Sulfur Metabolism and Stress Defense Responses in Plants

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

Sulfur management is an important issue in crop plant nutrition. Sulfur has a role in fundamental processes such as electron transport, structure and regulation. It is also associated with photosynthetic oxygen production, abiotic and biotic stress resistance and secondary metabolism. Sulfate uptake, reductive assimilation and integration into cysteine and methionine are the central processes that direct oxidized and reduced forms of organically bound S into their various functions. Sulfur-containing defense compounds that are crucial for plant survival during biotic and abiotic stress include elemental sulfur, hydrogen sulfide, glutathione, phytochelatins, S-rich proteins and various secondary metabolites. Formation of these compounds in plants is closely related to the supply, demand, uptake and assimilation of S. This review will highlight the role of S during the stress response in plants and the relationship between S metabolism and primary S nutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ACCO:

1-aminocyclopropane-1-carboxylic acid oxidase

ACCS:

1-aminocyclopropane-1-carboxylic acid synthase

Al:

Aluminum

AlCl3 :

Aluminum chloride

APR:

Adenosine 5′ phosphosulfate reductase

APX:

Ascorbate peroxidase

ATP:

Adenosine triphosphate

ATP-S:

Adenosine triphosphate-sulfurylase

AU:

Auxins

C:

Carbon

CAS:

β-cyanoalanine synthase

CAT:

Catalase

CbL:

Cystathionine β-lyase

Cd:

Cadmium

CgS:

Cystathionine γ-synthase

cDNA:

Complementary deoxyribonucleic acid

CK:

Cytokinins

Cys:

Cysteine

CysK:

Cysteine synthase

ET:

Ethylene

GA:

Gibberellins

DMSP:

Dimethylsulfonio-propionate

GLU:

Glutamate or glutamic acid

GLY:

Glycine

GPX:

Guaiacol peroxidase

GR:

Glutathione reductase

GS:

Glucosinolates

GSH:

Glutathione

H2O2 :

Hydrogen peroxide

H2S:

Hydrogen sulfide

HMT:

Homocysteine S-methyltransferase

HPLC:

High-performance liquid chromatography

JA:

Jasmonates

K:

Potassium

LCD:

L-cysteine desulfhydrase

MDA:

Malondialdehyde

MeJA:

Methyl jasmonate

Met:

Methionine

mRNA:

Messenger ribonucleic acid

MS:

Methionine synthase

MTs:

Metallothioneins

N:

Nitrogen

NaHS:

Sodium hydrosulfide

NR:

Nitrate reductase

OAS:

O-acetylserine

OASS:

O-acetylserine sulfhydrylase

OASTL:

O-acetylserine(thiol) lyase

OPHS:

O-phosphohomoserine

P:

Phosphorus

PA:

Polyamines

PAPS:

3′-phosphoadenosine 5′-phosphosulfate

PCs:

Phytochelatins

ROS:

Reactive oxygen species

RT-PCR:

Reverse transcription polymerase chain reaction

RuBisCO:

Ribulose-1,5-bisphosphate carboxylase/oxygenase

S:

Sulfur

S2− :

Sulfide

SA:

Salicylic acid

SAM:

S-adenosyl methionine

SAMDC:

S-adenosylmethionine decarboxylase

SAMS:

S-adenosyl methionine synthetase, SAM synthetase

SAT:

Serine acetyltransferase

SiR:

Sulfite reductase

SLC13:

Sodium/ SO4 2− co-transporter

SLC26:

SO4 2−/anion exchanger in animals

SMM:

S-methylmethionine

SO2 :

Sulfur dioxide

SO3 2− :

Sulfite

SO4 2− :

Sulfate

SOD:

Superoxide dismutase

SOT:

Sulfotransferase protein family

STs:

Sulfotransferases

SUL:

Proton/ SO4 2−co-transporter in yeast

SULTR:

Proton/ SO4 2−co-transporter in plants

TS:

Threonine synthase

References

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    Article  PubMed  CAS  Google Scholar 

  • Al-Whaibi MH, Siddiqui MH, Basalah MO (2012) Salicylic acid and calcium induced protection of wheat against salinity. Protoplasma 249:769–778

    Article  CAS  PubMed  Google Scholar 

  • Arruda MAZ, Azevedo RA (2009) Metallomics and chemical speciation: towards a better understanding of metal-induced stress in plants. Ann Appl Biol 155:301–307

    Article  CAS  Google Scholar 

  • Azevedo RA, Arruda P, Turner WL, Lea PJ (1997) The biosynthesis and metabolism of the aspartate derived amino acids in higher plants. Phytochemistry 46:395–419

    Article  CAS  PubMed  Google Scholar 

  • Azevedo RA, Alas RM, Smith RJ, Lea PJ (1998) Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase deficient mutant of barley. Physiol Plant 104:280–292

    Article  CAS  Google Scholar 

  • Azevedo RA, Lancien M, Lea PJ (2006) The aspartic acid metabolic pathway, an exciting and essential pathway in plants. Amino Acids 30:143–162

    Article  CAS  PubMed  Google Scholar 

  • Azevedo RA, Carvalho RF, Cia MC, Gratão PL (2011) Sugarcane under pressure: an overview of biochemical and physiological studies of abiotic stress. Trop Plant Biol 4:42–51

    Article  CAS  Google Scholar 

  • Becher M, Talke IN, Krall L, Kramer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251–268

    Article  CAS  PubMed  Google Scholar 

  • Bell L, Wagstaff C (2014) Glucosinolates, myrosinase hydrolysis products, and flavonols found in rocket (Eruca sativa and Diplotaxis tenuifolia). J Agric Food Chem 62:4481–4492

    Article  CAS  PubMed  Google Scholar 

  • Biswal B, Raval MK, Biswal UC, Joshi P (2008) Response of photosynthetic organelles to abiotic stress: modulation by sulphur metabolism. In: Khan A, Singh S, Umar S (eds) Sulphur assimilation and abiotic stress in plants. Springer-Verlag, Berlin, pp 167–191

    Chapter  Google Scholar 

  • Bitrián M, Zarza X, Altabella T, Tiburcio AF, Alcázar R (2012) Polyamines under abiotic stress: metabolic crossroads and hormonal crosstalks in plants. Metabolites 2:516–528

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Boaretto LF, Carvalho G, Borgo L, Creste S, Landell MGA, Mazzafera P, Azevedo RA (2014) Water stress reveals differential antioxidant responses of tolerant and non-tolerant sugarcane genotypes. Plant Physiol Biochem 74:166–175

    Article  CAS  Google Scholar 

  • Brocard-Gifford I, Lynch TJ, Garcia ME, Malhotra B, Finkelstein RR (2004) The Arabidopsis thaliana ABSICISIC ACID-INSENSITIVE8 encodes a novel protein mediating absicisic acid and sugar responses essential for growth. Plant Cell 16:406–421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Buchner P, Takahashi H, Hawkesford M (2004) Plant sulphate transporters: co-ordination of uptake, intracellular and long distance transport. J Exp Bot 55:1765–1773

    Article  CAS  PubMed  Google Scholar 

  • Bulbovas P, Souza SR, Esposito JBN, Moraes RM, Alves ES, Domingos M, Azevedo RA (2014) Assessment of the ozone tolerance of two soybean cultivars (Glycine max cv. Sambaíba and Tracajá) cultivated in Amazonian areas. Environ Sci Pollut Res 21:10514–10524

    Article  CAS  Google Scholar 

  • Bürstenbinder K, Sauter M (2012) Early events in the ethylene biosynthetic pathway – regulation of the pools of methionine and S-adenosylmethionine. Ann Plant Rev 44:19–52

    Google Scholar 

  • Carfagna S, Vona V, Di Martino V, Esposito S, Rigano C (2011) Nitrogen assimilation and cysteine biosynthesis in barley: evidence for root sulphur assimilation upon recovery from N deprivation. Environ Exp Bot 71:18–24

    Article  CAS  Google Scholar 

  • Carvalho RF, Campos ML, Azevedo RA (2011) The role of phytochrome in stress tolerance. J Integr Plant Biol 53:920–929

    Article  CAS  PubMed  Google Scholar 

  • Chan KX, Wirtz M, Phua SY, Estavillo GM, Pogson BJ (2013) Balancing metabolites in drought: the sulfur assimilation conundrum. Trends Plant Sci 18:18–29

    Article  CAS  PubMed  Google Scholar 

  • Choppala G, Saifullah Bolan N, Bibi S, Igbal M, Rengel Z, Kunhikrishnan A, Ashwath N (2014) Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Crit Rev Plant Sci 33:374–391

    Article  CAS  Google Scholar 

  • Cia MC, Guimarães ACR, Medici LO, Chabregas SM, Azevedo RA (2012) Antioxidant responses to water deficit by drought-tolerant and - sensitive sugarcane varieties. Ann Appl Biol 161:313–324

    Article  CAS  Google Scholar 

  • Davidian JC, Kopriva S (2010) Regulation of sulphate uptake and assimilation – the same or not the same? Mol Plant Adv 3:314–325

    Article  CAS  Google Scholar 

  • De Bona FD, Fedoseyenko D, von Wirén N, Monteiro FA (2011) Nitrogen utilization by sulfur-deficient barley plants depends on the nitrogen form. Environ Exp Bot 74:237–244

    Article  CAS  Google Scholar 

  • Du L, Ali GS, Simons KA, Hou J, Yang T, Reddy AS, Poovaiah BW (2009) Ca(2+)/calmodulin regulates salicylic-acid-mediated plant immunity. Nature 457:1154–1158

    Article  CAS  PubMed  Google Scholar 

  • Ernst WHO, Krauss GJ, Verkleij JAC, Wesenberg D (2008) Interaction of heavy metals with the sulphur metabolism in angiosperms from an ecological point of view. Plant Cell Environ 31:123–143

    CAS  PubMed  Google Scholar 

  • Fatma M, Khan MIR, Masood A, Khan NA (2013) Coordinate changes in assimilatory sulfate reduction are correlated to salt tolerance: involvement of phytohormones. Ann Rev Res Biol 3:267–295

    CAS  Google Scholar 

  • Foyer CH, Noctor G (2012) Managing the cellular redox hub in photosynthetic organisms. Plant Cell Environ 35:199–201

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Francois JA, Kumaran S, Jez JM (2006) Structural basis for interaction of O-acetylserine sulfhydrylase and serine acetyltransferase in the Arabidopsis cysteine synthase complex. Plant Cell 18:3647–3655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46

    Article  CAS  Google Scholar 

  • García-Mata C, Lamattina L (2010) Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling. New Phytol 188:977–984

    Article  PubMed  CAS  Google Scholar 

  • Gfeller A, Baerenfaller K, Loscos J, Chételat A, Baginsky S, Farmer EE (2011) Jasmonate controls polypeptide patterning in undamaged tissue in wounded Arabidopsis leaves. Plant Physiol 156:1797–1807

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ghelfi A, Gaziola SA, Cia MC, Chabregas SM, Falco MC, Kuser-Falcão PR, Azevedo RA (2011) Cloning, expression, molecular modelling and docking analysis of glutathione transferase from Saccharum officinarum. Ann Appl Biol 159:267–280

    Article  CAS  Google Scholar 

  • Gojon A, Nacry P, Davidian JC (2009) Root uptake regulation: a central process for NPS homeostasis in plants. Curr Opin Plant Biol 12:328–338

    Article  CAS  PubMed  Google Scholar 

  • Gotor C, Laureano-Marin AM, Moreno I, Aroca A, Garcia I, Romero LC (2014) Signaling in plant cytosol: cysteine or sulfide? Amino Acids 14:1–10

    Google Scholar 

  • Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy-metal stressed plants a little easier. Funct Plant Biol 32:481–494

    Article  CAS  Google Scholar 

  • Gratão PL, Monteiro CC, Antunes AM, Peres LEP, Azevedo RA (2008) Acquired tolerance of tomato (Lycopersicon esculentum cv. Micro-Tom) plants to cadmium-induced stress. Ann Appl Biol 153:321–333

    Article  Google Scholar 

  • Gratão PL, Monteiro CC, Carvalho RF, Tezotto T, Piotto FA, Peres LEP, Azevedo RA (2012) Biochemical dissecation of diageotropica and never ripe tomato mutants to Cd-stressful conditions. Plant Physiol Biochem 56:79–96

    Article  PubMed  CAS  Google Scholar 

  • Gu CS, Liu LQ, Zhao YH, Deng YM, Zhu XD, Huang SZ (2014) Overexpression of Iris. lactea var. Chinensis metallothionein IIMT2a enhances cadmium tolerance in Arabidopsis thaliana. Ecotoxicol Environ Saf 105:22–28

    Article  CAS  PubMed  Google Scholar 

  • Guo RF, Shen WS, Qian HM, Zhang M, Liu LH, Wang QM (2013) Jasmonic acid and glucose synergistically modulate the accumulation of glucosinolates in Arabidopsis thaliana. J Exp Bot 64:5707–5719

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Halkier B, Geshenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    Article  CAS  PubMed  Google Scholar 

  • Hatzfeld Y, Maruyama A, Schmidt A, Noji M, Ishizawa K, Saito K (2000) β-Cyanoalanine synthase is a mitochondrial cysteine synthase-like protein in spinach and Arabidopsis. Plant Physiol 123:1163–1171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hawkesford MJ (2005) Sulphur. In: Broadley MR, White PJ (eds) Plant nutritional genomics, 1st edn. Dordrecht

  • Hawkesford MJ (2012) Sulfate uptake and assimilation – whole plant regulation. Proc Int Plant Sulfur Workshop 1:11–24

    Google Scholar 

  • Hawkesford MJ, De Kok LJ (2006) Managing sulphur metabolism in plants. Plant Cell Environ 29:382–395

    Article  CAS  PubMed  Google Scholar 

  • Hell R, Kruse C (2006) Sulfur in biotic interactions of plants. In: Hawkesford MJ, De Kok JP (eds) Sulfur in plant: an ecological perspective. Springer, 264p

  • Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette MLM, Cuine S, Aurov P, Richaud P, Forestier C, Bourguignon J, Renou JP, Vavasseur A, Leonhardt N (2006) Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88:1754–1768

    Article  CAS  Google Scholar 

  • Hesse H, Trachsel N, Suter M, Kopriva S, von Ballooms P, Rennemberg H, Brunold C (2003) Effect of glucose on assimilatory sulfate reduction in roots of Arabidopsis thaliana. J Exp Bot 54:1701–1709

    Article  CAS  PubMed  Google Scholar 

  • Hossain Z, Komatsu (2013) Contribution of proteomic studies towards understanding plant heavy metal stress responses. Front Plant Sci 3:1–12

    Article  Google Scholar 

  • Hussain SS, Ali M, Ahmad M, Siddique KHM (2011) Polyamines: Natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv 29:300–311

  • Iannone MF, Groppa MD, Benavides MP (2015) Cadmium induces different biochemical responses in wild type and catalase-deficient-tobacco plants. Environ Exp Bot 109:201–211

    Article  CAS  Google Scholar 

  • Iqbal N, Masood A, Iqbal M, Khan R, Asgher M, Fatma M, Khan NA (2013) Cross-talk between sulfur assimilation and ethylene signaling in plants. Plant Signal Behav 8:104–112

    Article  CAS  Google Scholar 

  • Jacob C, Anwar A (2008) The chemistry behind redox regulation with focus on sulphur redox systems. Physiol Plant 133:469–480

    Article  CAS  PubMed  Google Scholar 

  • Jamal A, Fazli IS, Ahmad S, Kim KT, Oh DG, Abdin MZ (2006) Effect of sulfur on nitrate reductase and ATP sulfurylase activities in groundnut (Arachis hypogea L.). J Plant Biol 49:513–517

    Article  CAS  Google Scholar 

  • Jin Z, Shen J, Qiao Z, Yang G, Wang R, Pei Y (2011) Hydrogen sulfide improves drought resistance in Arabidopsis thaliana. Biochem Biophys Res Commun 44:481–486

    Article  CAS  Google Scholar 

  • Jobe TO, Sung DY, Akmakijan G, Pham A, Komives EA, Mendoza-Cózatil DG, Schroeder JI (2012) Feedback inhibition by thiols outranks glutathione depletion: a luciferase-based screen reveals glutathione-deficient γ-ECS and glutathione synthetase mutants impaired in cadmium-induced sulfate assimilation. Plant J 70:783–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Josefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defences. Int J Mol Sci 13:3145–3175

    Article  CAS  Google Scholar 

  • Jost R, Altschmied L, Bloem E, Bogs J, Gershenzon J, Hahnel U, Hansch R, Hartmann T, Kopriva S, Kruse C, Mendel RR, Papenbrock J, Reichel M, Rennenberg H, Schnug E, Schmidt A, Textor S, Tokuhita J, Wachter A, Wirtz M (2005) Expression profiling of metabolic genes in response to methyl jasmonate reveals regulation of genes of primary and secondary sulphur-related pathways in Arabidopsis thaliana. Photosynth Res 86:491–508

    Article  CAS  PubMed  Google Scholar 

  • Kawashima CG, Matthewman CA, Huang S, Lee BR, Yoshimoto N, Koprivova A, Rubio-Somoza I, Todesco M, Rathjen T, Saito K, Takahashi T, Koptiva S (2011) Interplay of SLIM1 and miR395 in the regulation of sulfate assimilation in Arabidopsis. Plant J 66:863–876

    Article  CAS  PubMed  Google Scholar 

  • Khan NA, Mir, Nazar R, Singh S (2008) The application of ethephon (an ethylene releaser) increases growth, photosynthesis and nitrogen accumulation in mustard (Brassica juncea L.) under high nitrogen levels. Plant Biol 10:534–538

    Article  CAS  PubMed  Google Scholar 

  • Khorshidi MB, Yarnia M, Hassanpanah D (2009) Salinity effects on nutrients accumulation in alfafa shoots in hydroponic condition. J Food Agric Environ 7:787–790

    CAS  Google Scholar 

  • Klein M, Papenbrock J (2004) The multi-protein family of Arabidopsis sulphotransferases and their relatives in other plant species. J Exp Bot 55:1809–1820

    Article  CAS  PubMed  Google Scholar 

  • Kopriva S (2006) Regulation of sulfate assimilation in Arabidopsis and beyond. Ann Bot 97:479–495

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kopriva S, Rennenberg H (2004) Control of sulfate assimilation and glutathione synthesis: interaction with N and C metabolism. J Exp Bot 55:1831–1842

    Article  CAS  PubMed  Google Scholar 

  • Koprivova A, Kopriva S (2014) Molecular mechanisms of regulation of sulphate assimilation: first steps on a long road. Front Plant Sci 5:1–11

    Article  Google Scholar 

  • Koprivova A, Suter M, Op den Camp R, Brunold C, Kopriva S (2000) Regulation of sulfate assimilation by nitrogen in Arabidopsis. Plant Physiol 122:737–746

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koralewska A, Stuiver CEE, Posthumus FS, Kopriva S, Hawkesford MJ, De Kok LJ (2008) Regulation of sulfate uptake, expression of the sulfate transporters Sultr1;1 and Sultr1;2, and APS reductase in Chinese cabbage (Brassica pekinensis) as affected by atmospheric H2S nutrition and sulfate deprivation. Funct Plant Biol 35:318–327

    Article  CAS  Google Scholar 

  • Krischan J, Makaruk A, Harasek M (2012) Design and scale-up of an oxidative scrubbing process for the selective removal of hydrogensulfide from biogas. J Hazard Mater 215:49–56

    Article  PubMed  CAS  Google Scholar 

  • Kruse J, Kopriva S, Hansch R, Krauss GJ, Mendel RR, Rennemberg H (2007) Interaction of sulfur and nitrogen nutrition in tobacco (Nicotiana tabacum) plants: significance of nitrogen source and root nitrate reductase. Plant Biol 9:638–646

    Article  CAS  PubMed  Google Scholar 

  • Leung SCS, Smith D, Chen R, McCallum JA, McKenzie M, McManus MT (2006) Characterization of adenosine 5′-phospho-sulfate kinase (APSK) genes from higher plants. In: De Kok LJ, Rennenber H, Hawkesford J (eds) Sulfur metabolism in plants, pp 67–70

  • Lewandowska M, Sirko A (2008) Recent advances in understanding plant response to sulphur-deficiency stress. Acta Biochim Pol 55:457–471

    CAS  PubMed  Google Scholar 

  • Li ZG, Gong M, Xie H, Yang L, Li J (2012) Hydrogen sulfide donor sodium hydrosulfide-induced heat tolerance in tobacco (Nicotiana tabacum L) suspension cultured cells and involvement of Ca2+ and calmodulin. Plant Sci 185:185–189

  • Li H, Yan SH, Zhao L, Tan JJ, Zhang Q, Gao F, Wang P, Hou HL, Li LJ (2014) Histone acetylation associated up-regulation of the cell wall related genes is involved in salt stress induced maize root swelling. BMC Plant Biol 105:1–14

    Google Scholar 

  • Lisjak M, Srivastava N, Teklic T, Civale L, Lewandowski K, Wilson I, Wood ME, Whiteman M, Hancock JT (2010) A novel hydrogen sulfide donor causes stomatal opening and reduces nitric oxide accumulation. Plant Physiol Biochem 48:931–935

    Article  CAS  PubMed  Google Scholar 

  • Lisjak M, Teklic T, Wilson ID, Wood ME, Whiteman M, Hancock JT (2011) Hydrogen sulfide effects on stomatal apertures. Plant Signal Behav 6:1444–1446

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lisjak M, Teklic T, Wilson ID, Whiteman M, Hancock JT (2013) Hydrogen sulfide: environmental factor or signalling molecule? Plant Cell Environ 36:1607–1616

    Article  CAS  PubMed  Google Scholar 

  • Lunde C, Zygadlo A, Simonsen HT, Nielsen PL, Blennow A, Haldrup A (2008) Sulphur starvation in rice: the effect on photosynthesis, carbohydrate metabolism, and oxidative stress protective pathways. Physiol Plant 133:508–521

    Article  CAS  Google Scholar 

  • Ma XL, Wang ZL, Qi YC, Zhao YX, Zhang H (2003) Isolation of S-adenosylmethionine synthase gene from Suadea salsa and its differential expression under NaCl stress. Acta Bot Sin 45:1359–1365

    CAS  Google Scholar 

  • Magrath R, Mithen R (1993) Maternal effects on the expression of individual aliphatic glucosinolates in seed and seedlings of Brassica napus. Plant Breed 111:249–252

    Article  CAS  Google Scholar 

  • Majic DB, Samardzic JT, Milisavljevic MD, Krstic AM, Maksimovic VR (2008) Two metallothionein gene family members in buckwheat: expression analysis in flooding stress using Real Time RT-PCR technology. Arch Biol Sci 60:77–82

    Article  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Watanabe-Takahashi A, Yamaya T, Takahashi H (2004) Induction of SULTR1;1 sulfate transporter in Arabidopsis roots involves protein phosphorylation/dephosphorylation circuit for transcriptional regulation. Plant Cell Physiol 45:340–345

    Article  CAS  PubMed  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Watanabe-Takahashi A, Inoue E, Yamaya T, Takahashi H (2005) Identification of a novel cis-acting element conferring sulfur deficiency response in Arabidopsis roots. Plant J 42:305–314

    Article  CAS  PubMed  Google Scholar 

  • Mazid M, Khan TM, Mohammad F (2011) Response of crop plants under sulphur stress tolerance. J Stress Physiol Biochem 7:25–57

    Google Scholar 

  • Medici LO, Reinert F, Carvalho DF, Kozak M, Azevedo RA (2014) What about keeping plants well watered? Environ Exp Bot 99:38–42

    Article  Google Scholar 

  • Mendoza-Cozatl D, Loza-Tavera H, Hernandez-Navarro A, Moreno-Sanchez R (2005) Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol Rev 29:653–671

  • Mera R, Torres E, Abalde J (2014) Sulphate more than a nutrient protects the microalga Chlamydomonas moewusii from cadmium toxicity. Aquat Toxicol 148:92–103

    Article  CAS  PubMed  Google Scholar 

  • Monteiro CC, Carvalho RF, Gratão PL, Carvalho G, Tezotto T, Medici LO, Peres LEP, Azevedo RA (2011) Biochemical responses of the ethylene-insensitive Never ripe tomato mutant subjected to cadmium and sodium stresses. Environ Exp Bot 71:306–320

    Article  CAS  Google Scholar 

  • Mugford SG, Yoshimoto N, Reichelt M, Wirtz M, Hill L, Mugford ST, Nakazato Y, Noji M, Takahashi H, Kramell R, Gigolashvili T, Flugge UI, Wasternack C, Gershenzon J, Hell R, Saito K, Kopriva S (2009) Disruption of adenosine-5′-phosphosulfate kinase in Arabidopsis reduces levels of sulfate secondary metabolites. Plant Cell 21:910–927

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mugford SG, Mattewman CA, Hill L, Kopriva S (2010) Adenosine-5′-phosphosulfate kinase is essential for Arabidopsis viability. FEBS Lett 584:119–123

    Article  CAS  PubMed  Google Scholar 

  • Muneer S, Lee BR, Kim KY, Park SH, Zhang Q, Kim TH (2014) Involvement of sulphur nutrition in modulating iron deficiency responses in photosynthetic organelles of oilseed rape (Brassica napus L.). Photosynth Res 119:319–329

    Article  CAS  PubMed  Google Scholar 

  • Na G, Salt DE (2011) The role of sulfur assimilation and sulfur-containing compounds in trace element homeostasis in plants. Environ Exp Bot 72:18–25

  • Nazar R, Iqbal N, Syeed S, Khan NA (2011a) Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J Plant Physiol 168:807–815

    Article  CAS  PubMed  Google Scholar 

  • Nazar R, Iqbal N, Masood A, Syeed S, Khan NA (2011b) Understanding the significance of sulfur in improving salinity tolerance in plants. Environ Exp Bot 70:80–87

    Article  CAS  Google Scholar 

  • Negishi M, Pedersen LG, Petrotchenko E, Shevtsov S, Gorokhov A, Kakuta Y, Pedersen LC (2001) Structure and function of sulfotransferases. Arch Biochem Biophys 390:149–157

    Article  CAS  PubMed  Google Scholar 

  • Noctor G (2006) Metabolic signaling in defence and stress: the central roles of soluble redox couples. Plant Cell Environ 29:409–425

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484

    Article  CAS  PubMed  Google Scholar 

  • Nogueirol RC, Monteiro FA, Gratão PL, Borgo L, Azevedo RA (2015) Tropical soils with high aluminum concentrations cause oxidative stress in two tomato genotypes. Environ Monit Assess 187:73

    Article  PubMed  CAS  Google Scholar 

  • Paiva LB, de Oliveira JG, Azevedo RA, Ribeiro DR, da Silva MG, Vitoria AP (2009) Ecophysiological responses of water hyacinth exposed to Cr3+ and Cr6+. Environ Exp Bot 65:403–409

    Article  CAS  Google Scholar 

  • Pál M, Horváth E, Janda T, Páldi E, Szalai G (2006) Physiological changes and defence mechanisms induced by cadmium stress in maize. J Plant Nutr Soil Sci 169:239–246

    Article  CAS  Google Scholar 

  • Pál M, Kovács V, Szalai G, Soós V, Ma X, Liu H, Mei H, Janda T (2014) Salicylic acid and abiotic stress responses in rice. J Agron Crop Sci 200:1–11

    Article  CAS  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295

    Article  CAS  PubMed  Google Scholar 

  • Qureshi MI, Qadir S, Zolla L (2007) Proteomics-based dissection of stress-responsive pathways in plants. J Plant Physiol 164:1239–1260

    Article  CAS  PubMed  Google Scholar 

  • Rahoui S, Ben C, Chaoui A, Martinez Y, Yamchi A, Rickauer M, Gentzbittel L, Ferjani EE (2014) Oxidative injury and antioxidant genes regulation in cadmium-exposed radicles of six contrasted Medicago truncatula genotypes. Environ Sci Pollut Res 21:8070–8083

    Article  CAS  Google Scholar 

  • Rausch T, Watcher A (2005) Sulphur metabolism: a versatile platform for launching defence operations. Trends Plant Sci 10:503–509

    Article  CAS  PubMed  Google Scholar 

  • Ravanel S, Gakiere B, Job D, Douce R (1998) The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci U S A 95:7805–7812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rennenberg H, Herschbach C (2012) Sulphur compounds in multiple compensation reactions of abiotic stress responses. Sulphur Metabolism in Plants. Proc Int Plant Sulphur Workshop 1:203–215

    Google Scholar 

  • Riemenschneider A, Wegele R, Schimidt A, Papenbrock J (2005) Isolation and characterization of a D-cysteine desulphydrase protein from Arabidopsis thaliana. FEBS J 272:1291–1304

    Article  CAS  PubMed  Google Scholar 

  • Roy M, Wu R (2002) Overexpression of S-adenosylmethionine descarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Sci 163:987–992

    Article  CAS  Google Scholar 

  • Ruiz JM, Blumwald E (2002) Salinity-induced glutathione synthesis in Brassica napus. Planta 214:965–969

    Article  CAS  PubMed  Google Scholar 

  • Salvagiotti F, Castellarín JM, Miralles DJ, Pedrol HM (2009) Sulfur fertilization improves nitrogen use efficiency in wheat by increasing nitrogen uptake. Field Crop Res 113:170–177

    Article  Google Scholar 

  • Sasaki-Sekimoto Y, Taki N, Obayashi T, Aono M, Matsumoto F, Sakurai N, Suzuki H, Hirai MY, Noji M, Saito K, Masuda T, Takamita K, Shibata D, Ohta H (2005) Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis. Plant J 44:653–668

    Article  CAS  PubMed  Google Scholar 

  • Schachtman DP, Shin R (2007) Nutrient sensing and signaling: NPKS. Annu Rev Plant Biol 58:47–69

    Article  CAS  PubMed  Google Scholar 

  • Seth CS, Remans T, Keunen E, Jozefczak M, Gielen H, Opdenakker K, Weyens N, Vangronsveld J, Cuypers A (2012) Phytoextraction of toxic metals: a central role for glutathione. Plant Cell Environ 35:334–346

    Article  CAS  PubMed  Google Scholar 

  • Shan C, Liang Z (2010) Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. Plant Sci 178:130–139

    Article  CAS  Google Scholar 

  • Shao HB, Chu LY, Lu ZH, Kang CM (2008) Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int J Biol Sci 4:8–14

    Article  PubMed Central  CAS  Google Scholar 

  • Shulaev V, Cortesa D, Millerb G, Mittlerb R (2008) Metabolomics for plant stress response. Physiol Plant 132:199–208

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Mohammad F, Khan MN, Khan MNA (2008) Cumulative effect of soil and foliar application of nitrogen, phosphorus and sulfur on growth, physico-biochemical parameters, yield attributes and fatty acid composition in oil of erucic acid-free rapeseed-mustard genotypes. J Plant Nutr 31:1284–1298

    Article  CAS  Google Scholar 

  • Siddiqui MH, Mohammad F, Masrooor M, Khan M, Al-Whaibi M (2012) Cumulative effects of nitrogen and sulfur on Brassica juncea L. genotypes under NaCl stress. Protoplasma 249:139–153

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Srivastava AK, Suprasanna P, D’Souza SF (2013) Identification and profiling of arsenic stress-induced microRNAs in Brassica juncea. J Exp Bot 64:303–315

    Article  CAS  PubMed  Google Scholar 

  • Stulen I, De Kok LJ (2012) Foreword: exploring interactions between sulfate and nitrate uptake at a whole plant level. Proc Int Plant Sulfur Workshop 1:1–8

    Google Scholar 

  • Su Y, Liu J, Lu Z, Wang X, Zhang Z, Shi G (2014) Effects of iron deficiency on subcellular distribution and chemical forms of cadmium in peanut roots in relation to its translocation. Environ Exp Bot 97:40–48

    Article  CAS  Google Scholar 

  • Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62:157–184

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Buchner P, Yoshimoto N, Hawkesford MJ, Shiu SH (2012) Evolutionary relationships and functional diversity of plant sulfate transporters. Front Plant Sci 2:1–9

    Article  CAS  Google Scholar 

  • Vitória AP, Lea PJ, Azevedo RA (2001) Antioxidant enzymes responses to cadmium in radish tissues. Phytochemistry 57:701–710

    Article  PubMed  Google Scholar 

  • Waie B, Rajam MV (2003) Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene. Plant Sci 164:727–734

    Article  CAS  Google Scholar 

  • Wang SC, Frey P (2007) S-adenosylmethionine as an oxidant: the radical SAM superfamily. Trends Biochem Sci 32:101–110

    Article  CAS  PubMed  Google Scholar 

  • Wang KLC, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14:S131–S151

    PubMed Central  CAS  PubMed  Google Scholar 

  • Weber M, Harada E, Vess C, von Roepenack-Lahaye E, Clemens S (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential hyperaccumulation factors. Plant J 37:269–281

    Article  CAS  PubMed  Google Scholar 

  • Yadav SK (2010) Heavy metal toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179

    Article  CAS  Google Scholar 

  • Yoshimoto N, Inoue E, Watanabe-Takahashi A, Saito K, Takahashi H (2007) Posttranscriptional regulation of high affinity sulfate transporters in Arabidopsis by sulfur nutrition. Plant Physiol 145:377–388

    Article  CAS  Google Scholar 

  • Youssefian S, Nakamura M, Orudgev E, Kondo N (2001) Increased cysteine biosynthesis capacity of transgenic tobacco overexpressing an O-acetylserine(thiol) lyase modifies plant responses to oxidative stress. Plant Physiol 126:1001–1011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zagorchev L, Seal CE, Kranner I, Odjakova M (2013) A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 14:7405–7432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang SW, Li CH, Cao J, Zhang YC, Zhang SQ, Xia YF, Sun DY, Sun Y (2009) Altered architecture and enhanced drought tolerance in rice via the down-regulation of indole-3-acetic acid by TLD1/OsGH3.13 activation. Plant Physiol 151:1889–1901

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang H, Tan ZQ, Hu LY, Wang SH, Luo JP, Jones RL (2010) Hydrogen sulfide alleviates aluminium toxicity in germinating wheat seedlings. J Integr Plant Biol 52:556–567

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Pasini R, Dan H, Joshi N, Zhao YH, Leustek T, Zheng ZL (2014) Aberrant gene expression in the Arabidopsis SULTR1;2 mutants suggests a possible regulatory role for this sulphate transporter in response to sulphur nutrient status. Plant J 77:185–197

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP – Brazil), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq – Brazil) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES - Brazil) for continuous financial support over the years for our projects on this and related subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo A. Azevedo.

Additional information

Communicated by: Paulo Arruda

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capaldi, F.R., Gratão, P.L., Reis, A.R. et al. Sulfur Metabolism and Stress Defense Responses in Plants. Tropical Plant Biol. 8, 60–73 (2015). https://doi.org/10.1007/s12042-015-9152-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-015-9152-1

Keywords

Navigation