Skip to main content
Log in

Genome-wide association mapping for protein, oil and water-soluble protein contents in soybean

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

As a globally important legume crop, soybean provides excellent sources of protein and oil for human and livestock nutrition. Improving seed protein and oil contents has always been an important objective in soybean breeding. Water-soluble protein plays a significant role in the processing and efficacy of soybean protein. Here, a genome-wide association study (GWAS) of seed compositions (protein, oil, and water-soluble protein contents) was conducted using 211 diverse soybean accessions genotyped with a 355 K SoySNP array. Three, four, and five QTLs were identified related to the protein, oil, and water-soluble protein contents, respectively. Furthermore, five QTLs (qPC-15-1, qOC-8-1, qOC-12-1, qOC-20-1 and qWSPC-8-1) were detected in multiple environments. Analysis of the favorable alleles for oil and water-soluble protein contents showed that qOC-8-1 (qWSPC-8-1) exerted inverse effects on oil and water-soluble protein synthesis. Relative expression analysis suggested that Glyma.15G049200 in qPC-15-1 affects protein synthesis and Glyma.08G107800 in qOC-8-1 and qWSPC-8-1 might be involved in oil and water-soluble protein synthesis, producing opposite effects. The candidate genes and significant SNPs detected in the present study will allow a deeper understanding of the genetic basis for the regulation of protein, oil and water-soluble protein contents and provide important information that could be utilized in marker-assisted selection for soybean quality improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bachlava E, Dewey RE, Burton JW, Cardinal AJ (2009) Mapping and comparison of quantitative trait loci for oleic acid seed content in two segregating soybean populations. Crop Sci 49:433–442

    CAS  Google Scholar 

  • Barrett JC, Fry B, Maller J, Daly MJ (2004) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    PubMed  Google Scholar 

  • Chaudhary J, Patil G, Sonah H, Deshmukh R, Vuong T, Valliyodan B, Nguyen H (2015) Expanding omics resources for improvement of soybean seed composition traits. Front Plant Sci 6:1021

    PubMed  PubMed Central  Google Scholar 

  • Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, Frommer WB (2012) Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335:207–211

    CAS  PubMed  Google Scholar 

  • Cheng L, Yuan HY, Ren R, Zhao SQ, Han YP, Zhou QY, Ke DX, Wang YX, Wang L (2016) Genome-wide identification, classification, and expression analysis of amino acid transporter gene family in Glycine Max. Front Plant Sci 7:515

    PubMed  PubMed Central  Google Scholar 

  • Chung J, Babka HL, Graef GL, Staswick PE, Lee DJ, Cregan PB, Shoemaker RC, Specht JE (2003) The seed protein, oil, and yield QTL on soybean linkage group I. Crop Sci 43:1053–1067

    CAS  Google Scholar 

  • Clemente TE, Cahoon EB (2009) Soybean oil: genetic approaches for modification of functionality and total content. Plant Physiol 151:1030–1040

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Kraker JW, Gershenzon J (2011) From amino acid to glucosinolate biosynthesis: protein sequence changes in the evolution of methylthioalkylmalate synthase in Arabidopsis. Plant Cell 23:38–53

    PubMed  PubMed Central  Google Scholar 

  • Diers BW, Keim P, Fehr W, Shoemaker R (1992) RFLP analysis of soybean seed protein and oil content. Theor Appl Genet 83:608–612

    CAS  PubMed  Google Scholar 

  • Eskandari M, Cober ER, Rajcan I (2013) Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield. Theor Appl Genet 126:1677–1687

    CAS  PubMed  Google Scholar 

  • Fait A, Nesi AN, Angelovici R, Lehmann M, Pham PA, Song L, Haslam RP, Napier JA, Galili G, Fernie AR (2011) Targeted enhancement of glutamate-to-γ-aminobutyrate conversion in arabidopsis seeds affects carbon-nitrogen balance and storage reserves in a development-dependent manner. Plant Physiol 157:1026–1042

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gruis D, Selinger DA, Curran JM, Jung R (2002) Redundant proteolytic mechanisms process seed storage proteins in the bbsence of seed-type members of the vacuolar processing enzyme family of cysteine proteases. Plant Cell 14:2863–2882

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo B, Sleper DA, Nguyen HT, Arelli PR, Shannon JG (2006) Quantitative trait loci underlying resistance to three soybean cyst nematode populations in soybean PI 404198A. Crop Sci 46:224–233

    CAS  Google Scholar 

  • Hu D, Kan G, Hu W, Li Y, Hao D, Li X, Yang H, Yang Z, He X, Huang F, Yu D (2019) Identification of loci and candidate genes responsible for pod dehiscence in soybean via genome-wide association analysis across multiple environments. Front Plant Sci 10:811

    PubMed  PubMed Central  Google Scholar 

  • Hyten DL, Pantalone VR, Sams CE, Saxton AM, Landau-Ellis D, Stefaniak TR, Schmidt ME (2004) Seed quality QTL in a prominent soybean population. Theor Appl Genet 109:552–561

    CAS  PubMed  Google Scholar 

  • Kim M, Schultz S, Nelson RL, Diers BW (2016) Identification and fine mapping of a soybean seed protein QTL from PI 407788A on chromosome 15. Crop Sci 56:219–225

    CAS  Google Scholar 

  • Lam HM, Peng SS, Coruzzi GM (1994) Metabolic regulation of the gene encoding glutamine-dependent asparagine synthetase in Arabidopsis thaliana. Plant Physiol 106:1347–1357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Zhang YM (2011) Molecular evolution of glycinin and beta-conglycinin gene families in soybean (Glycine max L. Merr.). Heredity 106:633–641

    CAS  PubMed  Google Scholar 

  • Li T, Ma X, Li N, Zhou L, Liu Z, Han H, Gui Y, Bao Y, Chen J, Dai X (2017) Genome-wide association study discovered candidate genes of Verticillium wilt resistance in upland cotton (Gossypium hirsutum L.). Plant Biotechnol J 15:1520–1532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li YH, Reif JC, Hong HL, Li HH, Liu ZX, Ma YS, Li J, Tian Y, Li YF, Li WB, Qiu LJ (2018) Genome-wide association mapping of QTL underlying seed oil and protein contents of a diverse panel of soybean accessions. Plant Sci 266:95–101

    CAS  PubMed  Google Scholar 

  • Li S, Xu H, Yang J, Zhao T (2019) Dissecting the genetic architecture of seed protein and oil content in soybean from the Yangtze and Huaihe River Valleys using multi-locus genome-wide association studies. Int J Mol Sci 20:3041

    CAS  PubMed Central  Google Scholar 

  • Liang HZ, Yu YL, Wang SF, Lian Y, Wang TF, Wei YL, Gong PT, Liu XY, Fang XJ, Zhang MC (2010) QTL mapping of isoflavone, oil and protein contents in soybean (Glycine max L. Merr.). Ag Sci China 9:1108–1116

    CAS  Google Scholar 

  • Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, Gore MA, Buckler ES, Zhang Z (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28:2397–2399

    CAS  PubMed  Google Scholar 

  • Liu YF, Li QT, Lu X, Song QX, Lam SM, Zhang WK, Ma B, Lin Q, Man WQ, Du WG, Shui GH, Chen SY, Zhang JS (2014) Soybean GmMYB73 promotes lipid accumulation in transgenic plants. BMC Plant Biol 14:73

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu W, Wen Z, Li H, Yuan D, Li J, Zhang H, Huang Z, Cui S, Du W (2013) Identification of the quantitative trait loci (QTL) underlying water soluble protein content in soybean. Theor Appl Genet 126:425–433

    CAS  PubMed  Google Scholar 

  • Mansur L, Lark K, Kross H, Oliveira A (1993) Interval mapping of quantitative trait loci for reproductive, morphological, and seed traits of soybean (Glycine max L.). Theor Appl Genet 86:907–913

    CAS  PubMed  Google Scholar 

  • Mao T, Jiang Z, Han Y, Teng W, Zhao X, Li W (2013) Identification of quantitative trait loci underlying seed protein and oil contents of soybean across multi-genetic backgrounds and environments. Plant Breed 132:630–641

    CAS  Google Scholar 

  • Meyer K, Stecca KL, Ewell-Hicks K, Allen SM, Everard JD (2012) Oil and protein accumulation in developing seeds is influenced by the expression of a cytosolic pyrophosphatase in Arabidopsis. Plant Physiol 159:1221–1234

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ning H, Zhang C, Yao Y, Yu D (2010) Overexpression of a soybean O-acetylserine (thiol) lyase-encoding gene GmOASTL4 in tobacco increases cysteine levels and enhances tolerance to cadmium stress. Biotechnol Lett 32:557–564

    CAS  PubMed  Google Scholar 

  • Oyoo ME, Benitez ER, Kurosaki H, Ohnishi S, Miyoshi T, Kiribuchi-Otobe C, Horigane A, Takahashi R (2011) QTL analysis of soybean seed coat discoloration associated with II TT genotype. Crop Sci 51:464–469

    Google Scholar 

  • Panthee DR, Pantalone VR, Saxton AM, West DR, Sams CE (2006) Genomic regions associated with amino acid composition in soybean. Mol Breed 17:79–89

    CAS  Google Scholar 

  • Pathan SM, Vuong T, Clark K, Lee J-D, Shannon JG, Roberts CA, Ellersieck MR, Burton JW, Cregan PB, Hyten DL, Nguyen HT, Sleper DA (2013) Genetic mapping and confirmation of quantitative trait loci for seed protein and oil contents and seed weight in soybean. Crop Sci 53:765–774

    CAS  Google Scholar 

  • Patil G, Valliyodan B, Deshmukh R, Prince S, Nicander B, Zhao M, Sonah H, Song L, Lin L, Chaudhary J, Liu Y, Joshi T, Xu D, Nguyen HT (2015) Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis. BMC Genom 16:520

    Google Scholar 

  • Patil G, Mian R, Vuong T, Pantalone V, Song Q, Chen P, Shannon GJ, Carter TC, Nguyen HT (2017) Molecular mapping and genomics of soybean seed protein: a review and perspective for the future. Theor Appl Genet 130:1975–1991

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phansak P, Soonsuwon W, Hyten D, Song Q, Cregan P, Graef G, Specht J (2016) Multi-population selective genotyping to identify soybean [Glycine max (L.) Merr.] seed protein and oil QTLs. G3 (Bethesda) 6:1635–1648

    CAS  Google Scholar 

  • Powell JE, Henders AK, McRae AF, Caracella A, Smith S, Wright MJ, Whitfield JB, Dermitzakis ET, Martin NG, Visscher PM, Montgomery GW (2012) The brisbane systems genetics study: genetical genomics meets complex trait genetics. PLoS ONE 7:e35430

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reinprecht Y, Poysa VW, Yu K, Rajcan I, Ablett GR, Pauls KP (2006) Seed and agronomic QTL in low linolenic acid, lipoxygenase-free soybean (Glycine max (L.) Merrill) germplasm. Genome 49:1510–1527

    CAS  PubMed  Google Scholar 

  • Si L, Chen J, Huang X, Gong H, Luo J, Hou Q, Zhou T, Lu T, Zhu J, Shangguan Y, Chen E, Gong C, Zhao Q, Jing Y, Zhao Y, Li Y, Cui L, Fan D, Lu Y, Weng Q, Wang Y, Zhan Q, Liu K, Wei X, An K, An G, Han B (2016) OsSPL13 controls grain size in cultivated rice. Nat Genet 48:447–456

    CAS  PubMed  Google Scholar 

  • Singh RJ, Hymowitz T (1999) Soybean genetic resources and crop improvement. Genome 42:605–616

    CAS  Google Scholar 

  • Smith AJ, Rinne RW, Seif RD (1989) Phosphoenolpyruvate carboxylase and pyruvate kinase involvement in protein and oil biosynthesis during soybean seed development. Crop Sci 29:349–353

    CAS  Google Scholar 

  • Song QX, Li QT, Liu YF, Zhang FX, Ma B, Zhang WK, Man WQ, Du WG, Wang GD, Chen SY, Zhang JS (2013) Soybean GmbZIP123 gene enhances lipid content in the seeds of transgenic Arabidopsis plants. J Exp Bot 64:4329–4341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Specht J, Chase K, Macrander M, Graef G, Chung J, Markwell J, Germann M, Orf J, Lark K (2001) Soybean response to water: a QTL analysis of drought tolerance. Crop Sci 41:493–509

    CAS  Google Scholar 

  • Tajuddin T, Watanabe S, Yamanaka N, Harada K (2003) Analysis of quantitative trait loci for protein and lipid contents in soybean seeds using recombinant inbred lines. Breed Sci 53:133–140

    CAS  Google Scholar 

  • Van K, McHale LK (2017) Meta-analyses of QTLs associated with protein and oil contents and compositions in soybean [Glycine max (L.) Merr.] seed. Int J Mol Sci 18:1180

    PubMed Central  Google Scholar 

  • Wang HW, Zhang B, Hao YJ, Huang J, Tian AG, Liao Y, Zhang JS, Chen SY (2007) The soybean Dof-type transcription factor genes, GmDof4 and GmDof11, enhance lipid content in the seeds of transgenic Arabidopsis plants. Plant J 52:716–729

    CAS  PubMed  Google Scholar 

  • Wang J, Chu S, Zhang H, Zhu Y, Cheng H, Yu D (2016) Development and application of a novel genome-wide SNP array reveals domestication history in soybean. Sci Rep 6:20728

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Yang Y, Zhang S, Che Z, Yuan W, Yu D (2020) GWAS reveals two novel loci for photosynthesis-related traits in soybean. Mol Genet Genom. https://doi.org/10.1007/s00438-020-01661-1

    Article  Google Scholar 

  • Warrington CV, Abdel-Haleem H, Hyten DL, Cregan PB, Orf JH, Killam AS, Bajjalieh N, Li Z, Boerma HR (2015) QTL for seed protein and amino acids in the Benning × Danbaekkong soybean population. Theor Appl Genet 128:839–850

    CAS  PubMed  Google Scholar 

  • Wu X, Blake S, Sleper D, Shannon J, Cregan P, Nguyen H (2009) QTL, additive and epistatic effects for SCN resistance in PI 437654. Theor Appl Genet 118:1093–1105

    CAS  PubMed  Google Scholar 

  • Xuan L, Zhang C, Yan T, Wu D, Hussain N, Li Z, Chen M, Pan J, Jiang L (2018) TRANSPARENT TESTA 4-mediated flavonoids negatively affect embryonic fatty acid biosynthesis in Arabidopsis. Plant Cell Environ 41:2773–2790

    CAS  PubMed  Google Scholar 

  • Zhang C, Meng Q, Gai J, Yu D (2008) Cloning and functional characterization of an O-acetylserine(thiol)lyase-encoding gene in wild soybean (Glycine soja). Mol Biol Rep 35:527–534

    CAS  PubMed  Google Scholar 

  • Zhang D, Kan G, Hu Z, Cheng H, Zhang Y, Wang Q, Wang H, Yang Y, Li H, Hao D, Yu D (2014) Use of single nucleotide polymorphisms and haplotypes to identify genomic regions associated with protein content and water-soluble protein content in soybean. Theor Appl Genet 127:1905–1915

    CAS  PubMed  Google Scholar 

  • Zhang D, Lu H, Chu S, Zhang H, Zhang H, Yang Y, Li H, Yu D (2017) The genetic architecture of water-soluble protein content and its genetic relationship to total protein content in soybean. Sci Rep 7:5053

    PubMed  PubMed Central  Google Scholar 

  • Zhang D, Zhang H, Hu Z, Chu S, Yu K, Lv L, Yang Y, Zhang X, Chen X, Kan G, Tang Y, An YC, Yu D (2019) Artificial selection on GmOLEO1 contributes to the increase in seed oil during soybean domestication. PLoS Genet 15:e1008267

    PubMed  PubMed Central  Google Scholar 

  • Zhao X, Dong H, Chang H, Zhao J, Teng W, Qiu L, Li W, Han Y (2019) Genome wide association mapping and candidate gene analysis for hundred seed weight in soybean [Glycine max (L.) Merrill]. BMC Genom 20:648

    Google Scholar 

  • Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W, Yu Y, Shu L, Zhao Y, Ma Y, Fang C, Shen Y, Liu T, Li C, Li Q, Wu M, Wang M, Wu Y, Dong Y, Wan W, Wang X, Ding Z, Gao Y, Xiang H, Zhu B, Lee S-H, Wang W, Tian Z (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33:408–414

    CAS  PubMed  Google Scholar 

  • Zhu-Shimoni JX, Galili G (1998) Expression of an arabidopsis aspartate kinase/homoserine dehydrogenase gene is metabolically regulated by photosynthesis-related signals but not by nitrogenous compounds. Plant Physiol 116:1023–1028

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Ministry of Science and Technology (2017YFE0111000), the Fundamental Research Funds for the Central Universities (KYZ201705), the National Natural Science Foundation of China (31571688, 31871649, 31671715), and the Ministry of Agriculture (2016ZX08004-003, 2016ZX08009003-004).

Author information

Authors and Affiliations

Authors

Contributions

GK, DY, and SZ designed the research, and SZ, DH, SZ, and DZ performed the research. SZ, HW, and HD analyzed the data, and SZ wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Guizhen Kan or Deyue Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies involving human participants or animals performed by any of the authors.

Additional information

Communicated by Stefan Hohmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 739 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Hao, D., Zhang, S. et al. Genome-wide association mapping for protein, oil and water-soluble protein contents in soybean. Mol Genet Genomics 296, 91–102 (2021). https://doi.org/10.1007/s00438-020-01704-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-020-01704-7

Keywords

Navigation