Skip to main content
Log in

Identification and characterization of a semi-dominant restorer-of-fertility 1 allele in sugar beet (Beta vulgaris)

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The sugar beet Rf1 locus has a number of molecular variants. We found that one of the molecular variants is a weak allele of a previously identified allele.

Abstract

Male sterility (MS) caused by nuclear-mitochondrial interaction is called cytoplasmic male sterility (CMS) in which MS-inducing mitochondria are suppressed by a nuclear gene, restorer-of-fertility. Rf and rf are the suppressing and non-suppressing alleles, respectively. This dichotomic view, however, seems somewhat unsatisfactory to explain the recently discovered molecular diversity of Rf loci. In the present study, we first identified sugar beet line NK-305 as a new source of Rf1. Our crossing experiment revealed that NK-305 Rf1 is likely a semi-dominant allele that restores partial fertility when heterozygous but full fertility when homozygous, whereas Rf1 from another sugar beet line appeared to be a dominant allele. Proper degeneration of anther tapetum is a prerequisite for pollen development; thus, we compared tapetal degeneration in the NK-305 Rf1 heterozygote and the homozygote. Degeneration occurred in both genotypes but to a lesser extent in the heterozygote, suggesting an association between NK-305 Rf1 dose and incompleteness of tapetal degeneration leading to partial fertility. Our protein analyses revealed a quantitative correlation between NK-305 Rf1 dose and a reduction in the accumulation of a 250 kDa mitochondrial protein complex consisting of a CMS-specific mitochondrial protein encoded by MS-inducing mitochondria. The abundance of Rf1 transcripts correlated with NK-305 Rf1 dose. The molecular organization of NK-305 Rf1 suggested that this allele evolved through intergenic recombination. We propose that the sugar beet Rf1 locus has a series of multiple alleles that differ in their ability to restore fertility and are reflective of the complexity of Rf evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alexander MP (1969) Differential staining of aborted and nonaborted pollen. Stain Technol 44:117–122

    Article  CAS  Google Scholar 

  • Arakawa T, Uchiyama D, Ohgami T, Ohgami R, Murata T et al (2018) A fertility-restoring genotype of beet (Beta vulgaris L.) is composed of a weak restorer-of-fertility gene and a modifier gene tightly linked to the Rf1 locus. PLoS ONE 13:e0198409

    Article  Google Scholar 

  • Budar F, Pelletier G (2001) Male sterility in plants: occurrence, determinism, significance and use. C R Acad Sci Paris Life Sci 324:543–550

    Article  CAS  Google Scholar 

  • Chase CD (2007) Cytoplasmic male sterility: a window to the world of plant mitochondrial-nuclear interactions. Trends Genet 23:81–90

    Article  CAS  Google Scholar 

  • Chen L, Liu Y-G (2014) Male sterility and fertility restoration in crops. Annu Rev Plant Biol 65:579–606

    Article  CAS  Google Scholar 

  • Cheng D, Kitazaki K, Xu D, Mikami T, Kubo T (2009) The distribution of normal and male-sterile cytoplasms in Chinese sugar-beet germplasm. Euphytica 165:345–351

    Article  Google Scholar 

  • Cheng D, Yoshida Y, Kitazaki K, Negoro S, Takahashi H et al (2011) Mitochondrial genome diversity in Beta vulgaris L. ssp. vulgaris (Leaf and Garden Beet Groups) and its implications concerning the dissemination of the crop. Genet Res Crop Evol 58:553–560

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Ducos E, Touzet P, Boutry M (2001) The male sterile G cytoplasm of wild beet displays modified mitochondrial respiratory complexes. Plant J 26:171–180

    Article  CAS  Google Scholar 

  • Dufay M, Touzet P, Maurice S, Cuguen J (2007) Modelling the maintenance of male-fertile cytoplasm in a gynodioecious population. Heredity 99:349–356

    Article  CAS  Google Scholar 

  • Duroc Y, Gaillard C, Hiard S, Defrance MC, Pelletier G et al (2005) Biochemical and functional characterization of ORF138, a mitochondrial protein responsible for Ogura cytoplasmic male sterility in Brassiceae. Biochimie 87:1089–1100

    Article  CAS  Google Scholar 

  • Duroc Y, Hiard S, Vrielynck N, Ragu S, Budar F (2009) The Ogura sterility-inducing protein forms a large complex without interfering with the oxidative phosphorylation components in rapeseed mitochondria. Plant Mol Biol 70:123–137

    Article  CAS  Google Scholar 

  • Duvick DN (1965) Cytoplasmic pollen sterility in corn. Adv Genet 13:1–56

    Article  Google Scholar 

  • Fujii S, Bond CS, Small ID (2011) Selection patterns on restorer-like genes reveal a conflict between nuclear and mitochondrial genomes throughout angiosperm evolution. Proc Natl Acad Sci USA 108:1723–1728

    Article  CAS  Google Scholar 

  • Geddy R, Brown GG (2007) Genes encoding pentatricopeptide repeat (PPR) proteins are not conserved in location in plant genomes and may be subject to diversifying selection. BMC Genom 8:130

    Article  Google Scholar 

  • Hanson MR, Bentolila S (2004) Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16:S154–S169

    Article  CAS  Google Scholar 

  • Honma Y, Taguchi K, Hiyama H, Yui-Kurino R, Mikami T et al (2014) Molecular mapping of restorer-of-fertility 2 gene identified from a sugar beet (Beta vulgaris L. ssp. vulgaris) homozygous for the non-restoring restorer-of-fertility 1 allele. Theor Appl Genet 127:2567–2574

    Article  CAS  Google Scholar 

  • Hu L, Liang W, Yin C, Cui X, Zong J et al (2011) Rice MADS3 regulates ROS homeostasis during late anther development. Plant Cell 23:515–533

    Article  CAS  Google Scholar 

  • Kagami H, Kurata M, Matsuhira H, Taguchi K, Mikami T et al (2015) Sugar beet (Beta vulgaris L.). In: Wang K (ed) Agrobacterium protocols. Methods in molecular biology, vol 1223. Springer, New York, pp 335–347

    Google Scholar 

  • Kagami H, Taguchi K, Arakawa T, Kuroda Y, Tamagake H et al (2016) Efficient callus formation and plant regeneration are heritable characters in sugar beet (Beta vulgaris L.). Hereditas 153:12

    Article  Google Scholar 

  • Kato H, Tezuka K, Feng YY, Kawamoto T, Takahashi H et al (2007) Structural diversity and evolution of the Rf-1 locus in the genus Oryza. Heredity 99:516–524

    Article  CAS  Google Scholar 

  • Kim Y-J, Zhang D (2018) Molecular control of male fertility for crop hybrid breeding. Trends Plant Sci 23:53–65

    Article  CAS  Google Scholar 

  • Kitazaki K, Kubo T, Kagami H, Matsumoto T, Fujita A et al (2011) A horizontally transferred tRNACys gene in the sugar beet mitochondrial genome: evidence that the gene is present in diverse angiosperms and its transcript is amino acylated. Plant J 68:262–272

    Article  CAS  Google Scholar 

  • Kitazaki K, Arakawa T, Matsunaga M, Yui-Kurino R, Matsuhira H et al (2015) Post-translational mechanisms are associated with fertility restoration of cytoplasmic male sterility in sugar beet (Beta vulgaris). Plant J 83:290–299

    Article  CAS  Google Scholar 

  • Lane N (2011) Mitonuclear match: optimizing fitness and fertility over generations drives ageing within generations. BioEssays 33:860–869

    Article  CAS  Google Scholar 

  • Laporte V, Merdinoglu D, Saumitou-Laprade P, Butterlin G, Vernet P et al (1998) Identification and mapping of RAPD and RFLP markers linked to a fertility restorer gene for a new source of cytoplasmic male sterility in Beta vulgaris ssp. maritima. Theor Appl Genet 96:989–996

    Article  CAS  Google Scholar 

  • Lee J, Yoon JB, Park HG (2008) Linkage analysis between the partial restoration (pr) and the restorer-of-fertility (Rf) loci in pepper cytoplasmic male sterility. Theor Appl Genet 117:383–389

    Article  CAS  Google Scholar 

  • Li X-Q, Jean M, Landry BS, Brown GG (1998) Restorer genes for different forms of Brassica cytoplasmic male sterility map to a single nuclear locus that modifies transcripts of several mitochondrial genes. Proc Natl Acad Sci USA 95:10032–10037

    Article  CAS  Google Scholar 

  • Luo D, Xu H, Liu Z, Guo J, Li H et al (2013) A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nat Genet 45:573–577

    Article  CAS  Google Scholar 

  • Mackenzie SA (2005) The influence of mitochondrial genetics on crop breeding strategies. In: Janick J (ed) Plant breeding reviews. Wiley, New York, pp 115–138

    Google Scholar 

  • Majewska-Sawka A, Rodriguez-Garcia MI, Nakashima H, Jassen B (1993) Ultrastructural expression of cytoplasmic male sterility in sugar beet (Beta vulgaris L.). Sex Plant Reprod 6:22–32

    Article  Google Scholar 

  • Matsuhira H, Kagami H, Kurata M, Kitazaki K, Matsunaga M et al (2012) Unusual and typical features of a novel restorer-of-fertility gene of sugar beet (Beta vulgaris L.). Genetics 192:1347–1358

    Article  CAS  Google Scholar 

  • Melonek J, Stone JD, Small I (2016) Evolutionary plasticity of restorer-of-fertility-like proteins in rice. Sci Rep 6:35152

    Article  CAS  Google Scholar 

  • Mora JRH, Rivals E, Mireau H, Budar F (2010) Sequence analysis of two alleles reveals that intra-and intergenic recombination played a role in the evolution of the radish fertility restorer (Rfo). BMC Plant Biol 10:35

    Article  Google Scholar 

  • Moritani M, Taguchi K, Kitazaki K, Matsuhira H, Katsuyama T et al (2013) Identification of the predominant nonrestoring allele for Owen-type cytoplasmic male sterility in sugar beet (Beta vulgaris L.): development of molecular markers for the maintainer genotype. Mol Breed 32:91–100

    Article  CAS  Google Scholar 

  • Nishizawa S, Kubo T, Mikami T (2000) Variable number of tandem repeat loci in the mitochondrial genomes of beets. Curr Genet 37:34–38

    Article  CAS  Google Scholar 

  • Ohgami T, Uchiyama D, Ue S, Yui-Kurino R, Yoshida Y, Kamei Y, Kuroda Y et al (2016) Identification of molecular variants of the nonrestoring restorer-of-fertility 1 allele in sugar beet (Beta vulgaris L.). Theor Appl Genet 129:675–688

    Article  CAS  Google Scholar 

  • Owen FV (1945) Cytoplasmically inherited male-sterility in sugar beets. J Agric Res 71:423–440

    Google Scholar 

  • Papini A, Mosti S, Brighigna L (1999) Programmed-cell-death events during tapetum development of angiosperms. Protoplasma 207:213–221

    Article  Google Scholar 

  • Parish RW, Li SF (2010) Death of a tapetum: a programme of developmental altruism. Plant Sci 178:73–89

    Article  CAS  Google Scholar 

  • Pillen K, Steinrücken G, Herrmann RG, Jung C (1993) An extended linkage map of sugar beet (Beta vulgaris L.) including nine putative lethal genes and the restorer gene X. Plant Breed 111:265–272

    Article  CAS  Google Scholar 

  • Ran Z, Michaelis G (1995) Mapping of a chloroplast RFLP marker associated with the CMS cytoplasm of sugar beet (Beta vulgaris). Theor Appl Genet 91:836–840

    Article  CAS  Google Scholar 

  • Rhoads DM, Brunner-Neuenschwander B, Levings CS III, Siedow JN (1998) Cross-linking and disulfide bond formation of introduced cysteine residues suggest a modified model for the tertiary structure of URF13 in the pore-forming oligomers. Arch Biochem Biophys 354:158–164

    Article  CAS  Google Scholar 

  • Rogers HJ (2006) Programmed cell death in floral organs: how and why do flowers die? Ann Bot 97:309–315

    Article  CAS  Google Scholar 

  • Ryan MT, Hoogenraad NJ (2007) Mitochondrial-nuclear communications. Annu Rev Biochem 76:701–722

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sanders PM, Bui AQ, Weterings K, McIntire KN, Hsu Y-C et al (1999) Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod 11:297–322

    Article  CAS  Google Scholar 

  • Schnable PS, Wise RP (1998) The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci 3:175–180

    Article  Google Scholar 

  • Stone JD, Koloušková P, Sloan D, Štorchová H (2017) Non-coding RNA may be associated with cytoplasmic male sterility in Silene vulgaris. J Exp Bot 68:1599–1612

    Article  CAS  Google Scholar 

  • Taguchi K, Hiyama H, Yui-Kurino R, Muramatsu A, Mikami T et al (2014) Hybrid breeding skewed the allelic frequencies of molecular variants derived from restorer-of-fertility 1 locus for cytoplasmic male sterility in sugar beet (Beta vulgaris L.). Crop Sci 54:1407–1412

    Article  CAS  Google Scholar 

  • Tang H, Xie Y, Liu Y-G, Chen L (2017) Advances in understanding the molecular mechanisms of cytoplasmic male sterility and restoration in rice. Plant Reprod 30:179–184

    Article  CAS  Google Scholar 

  • Touzet P (2012) Mitochondrial genome evolution and gynodioecy. In: Marechal-Drouard L (ed) Mitochondrial genome evolution. Academic Press, Oxford, pp 71–98

    Chapter  Google Scholar 

  • Touzet P, Hueber N, Bürkholz A, Barnes S, Cuguen J (2004) Genetic analysis of male fertility restoration in wild cytoplasmic male sterility G of beet. Theor Appl Genet 109:240–247

    Article  Google Scholar 

  • van der Blienk AM, Sedensky MM, Morgan PG (2017) Cell biology of the mitochondrion. Genetics 207:843–871

    Article  Google Scholar 

  • Wilson ZA, Zhang D-B (2009) From Arabidopsis to rice: pathways in pollen development. J Exp Bot 60:1479–1492

    Article  CAS  Google Scholar 

  • Wise RP, Dill CL, Schnable PS (1996) Mutator-induced mutations of the rf1 nuclear fertility restorer of T-cytoplasm maize alter the accumulation of T-urf13 mitochondrial transcripts. Genetics 143:1383–1394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto MP, Kubo T, Mikami T (2005) The 5′-leader sequence of sugar beet mitochondrial atp6 encodes a novel polypeptide that is characteristic of Owen cytoplasmic male sterility. Mol Genet Genom 273:342–349

    Article  CAS  Google Scholar 

  • Zhang H, Cheng X, Zhang L, Si H, Ge Y et al (2018) Rf4 has minor effects on the fertility restoration of wild abortive-type cytoplasmic male sterile japonica (Oryza sativa) lines. Euphytica 214:49

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by JSPS KAKENHI Grant Number 18K05564 (TK) and NARO Bio-oriented Technology Research Advancement Institution (BRAIN) (Research program on development of innovative technology, Grant Number 30001A) (KT, KK and TK). TA is a recipient of a JSPS Research Fellowship for Young Scientists (16J01146).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiko Kubo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by Mingliang Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig.

 1. Agarose (2%) gel electrophoresis of PCR products amplified with primers for cytoplasmic DNA markers (PDF 76 kb)

Supplementary Fig.

 2. PCR products amplified with primers for DNA marker o7 (PDF 67 kb)

Supplementary Fig.

 3. DNA gel blot analysis of an NK-305 plant probed with an orf20-like 3′-UTR (PDF 58 kb)

Supplementary Fig.

 4. Alignment of nucleotide sequences of orf20NK-198 and orf20NK-305-1 coding and flanking regions (PDF 68 kb)

Supplementary Fig.

 5. Alignment of nucleotide sequences of orf20LS and orf20NK-305-2 coding and flanking regions (PDF 70 kb)

Supplementary Fig.

 6. Alignment of amino acid sequences of the protein products deduced from orf20NK-198 and orf20NK-305-1 nucleotide sequences (PDF 33 kb)

Supplementary Fig.

 7. Alignment of amino acid sequences of the protein products deduced from orf20LS and orf20NK-305-2 nucleotide sequences (PDF 33 kb)

Supplementary Fig.

 8. Alignment of nucleotide sequences of the upstream regions of orf19 and orf20NK-305-2 (PDF 46 kb)

Supplementary Fig.

 9. Alignment of nucleotide sequences of the upstream regions of orf20LS and orf20NK-305-1 (PDF 60 kb)

Supplementary Fig.

 10. Immunoblot analysis of proteins from transgenic suspension cells separated by SDS-PAGE (PDF 91 kb)

Supplementary Fig.

 11. Immunoblot analysis of proteins from transgenic suspension cells separated by BN-PAGE (PDF 196 kb)

Supplementary Table

 1. Nucleotide sequences of primers used in this study (PDF 35 kb)

Supplementary Table

 2. Segregation of male fertility and o7 marker types in an F2 population (PDF 36 kb)

Supplementary Table

 3. Segregation of male fertility and s17 marker types in an admixture population (PDF 37 kb)

Supplementary Table

 4. Segregation of male fertility and s17 type in a BC2F2 population (PDF 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arakawa, T., Ue, S., Sano, C. et al. Identification and characterization of a semi-dominant restorer-of-fertility 1 allele in sugar beet (Beta vulgaris). Theor Appl Genet 132, 227–240 (2019). https://doi.org/10.1007/s00122-018-3211-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-018-3211-6

Navigation