Skip to main content
Log in

Genetic analysis of male fertility restoration in wild cytoplasmic male sterility G of beet

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Cytoplasmic male sterility (CMS) has been used in the breeding of sugar beet for decades but is also more generally an important feature of the reproductive system in its wild relative, Beta vulgaris ssp. maritima. Among the several CMSs found in wild populations, the G CMS is a mitochondrial variant of the respiratory chain. The segregants derived from a cross between a restored plant and a female (male-sterile) plant on G cytoplasm exhibited three sexual phenotypic classes: female, hermaphrodite and intermediate. The pattern of segregation suggests a genetic inheritance with two loci in epistatic interaction. Nevertheless, it was possible to apply a bulk segregant analysis approach to search for AFLP and microsatellite markers linked to the restorer locus (RfG 1 ) which controls the capacity to produce pollen [female versus non female (i.e. intermediates and hermaphrodites)] in the segregating population. A linkage group was constructed with four AFLP markers and nine microsatellites, and a total size of 40 cM (Kosambi). The closest marker, a microsatellite, was totally linked to RfG1, which was also flanked by two AFLP markers delimiting a 5 cM window. This linkage group was identified as being chromosome VIII where neither of the restorer loci of the Owen CMS are located.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abad AR, Mehrtens BJ, Mackenzie SA (1995) Specific expression in reproductive tissues and fate of a mitochondrial sterility-associated protein in cytoplasmic male-sterile bean. Plant Cell 7:271–285

    CAS  PubMed  Google Scholar 

  • Alexander MP (1969) Differential staining of aborted and non-aborted pollen. Stain Technol 44:117–122

    CAS  PubMed  Google Scholar 

  • Bailey MF (2002) A cost of restoration of male fertility in a gynodioecious species, Lobelia syphilitica. Evolution 56:2178–2186

    PubMed  Google Scholar 

  • Bailey MF, Delph LF, Lively CM (2003) Modeling gynodioecy: novel scenarios for maintaining polymorphism. Am Nat 161:762–776

    Article  PubMed  Google Scholar 

  • Bentolila S, Alfonso AA, Hanson MR (2002) A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. Proc Natl Acad Sci USA 99:10887–10892

    Article  CAS  PubMed  Google Scholar 

  • Boutin-Stadler V, Saumitou-Laprade P, Valero M, Jean R, Vernet P (1989) Spatio-temporal variation of male sterile frequencies in two natural populations of Beta maritima. Heredity 63:395–400

    Google Scholar 

  • Brown GG, Formanova N, Jin H, Wargachuk R, Dendy C, Patil P, Laforest M, Zhang J, Cheung WY, Landry BS (2003) The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J 35:262–272

    Article  CAS  PubMed  Google Scholar 

  • Budar F, Touzet P, De Paepe R (2003) The nucleo-mitochondrial conflict in cytoplasmic male sterilities revisited. Genetica 117:3–16

    Article  CAS  PubMed  Google Scholar 

  • Butterfass (1964) Die Chloroplastenzahlen in verschiedenartigen Zellen trisomer Zuckerrüben (Beta vulgaris L.). Z Bot 52:46–77

    Google Scholar 

  • Charlesworth D (1981) A further study of the problem of the maintenance of females in gynodioecious species. Heredity 46:27–39

    Google Scholar 

  • Charlesworth D, Laporte V (1998) The male sterility polymorphism of Silene vulgaris: Analysis of genetic data from two populations, and comparison with Thymus vulgaris. Genetics 150:1267–1282

    CAS  PubMed  Google Scholar 

  • Collin CL, Shykoff JA (2003) Outcrossing rates in the gynomonoecious-gynodioecious species Dianthus sylvestris (Caryophyllaceae). Am J Bot 90:579–585

    Google Scholar 

  • Cosmides LM, Tooby J (1981) Cytoplasmic inheritance and intragenomic conflict. J Theor Biol 89:83–129

    CAS  PubMed  Google Scholar 

  • Cuguen J, Wattier R, Saumitou-Laprade P, Forcioli D, Mörchen M, Van-Dijk H, Vernet P (1994) Gynodioecy and mitochondrial DNA polymorphism in natural populations of Beta vulgaris ssp. maritima. Genet Sel Evol 26:87–101

    Google Scholar 

  • Cui X, Wise RP, Schnable PS (1996) The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science 272:1334–1336

    CAS  PubMed  Google Scholar 

  • De Haan AA, Koelewijn HP, Hundscheid MPJ, Van Damme JMM (1997a) Dynamics of gynodioecy in Plantago lanceolata L. II. Mode of action and frequencies of restorer alleles. Genetics 147:1317–1328

    PubMed  Google Scholar 

  • De Haan AA, Hundscheid MPJ, van Hinsberg A (1997b) Effects of CMS types and restorer alleles on plant performance on Plantago lanceola L.:an indication for cost of restoration. J Evol Biol 10:803–820

    Article  Google Scholar 

  • Delourme R, Bouchereau A, Hubert N, Renard M, Landry BS (1994) Identification of RAPD markers linked to a fertility restorer gene for the Ogura radish cytoplasmic male sterility of rapeseed (Brassica napus L.). Theor Appl Genet 88:741–748

    Google Scholar 

  • Desloire S, Gherbi H, Laloui W, Marhadour S, Clouet V, Cattolico L, Falentin C, Giancola S, Renard M, Budar F, Small I, Caboche M, Delourme R, Bendahmane A (2003) Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide-repeat protein family. EMBO Rep 4:588–594

    Article  CAS  PubMed  Google Scholar 

  • Dill CL, Wise RP, Schnable PS (1997) Rf8 and Rf* mediate unique T-urf13-transcript accumulation, revealing a conserved motif associated with RNA processing and restoration of pollen fertility in T-cytoplasm maize. Genetics 147:1367–1379

    Google Scholar 

  • Ducos E, Touzet P, Boutry M (2001) The male sterile G cytoplasm of wild beet displays modified mitochondrial respiratory complexes. Plant J 26:171–180

    Article  CAS  PubMed  Google Scholar 

  • Frank SA (1989) The evolutionary dynamics of cytoplasmic male sterility. Am Nat 133:345–376

    Article  Google Scholar 

  • Gigord L, Lavigne C, Shykoff J, Atlan A (1999) Evidence for effects of restorer genes on male and female reproductive functions of hemaphrodites in the gynodioecious species Thymus vulgaris L. J Evol Biol 12:596–604

    Article  Google Scholar 

  • Gouyon PH, Vichot F, Van Damme JMM (1991) Nuclear-cytoplasmic male sterility: single point equilibria versus limit cycles. Am Nat 137:498–514

    Article  Google Scholar 

  • Halldén C, Bryngelsson T, Bosemark NO (1988) Two new types of cytoplasmic male sterility found in wild Beta beets. Theor Appl Genet 75:561–568

    Google Scholar 

  • Hansen M, Kraft T, Christiansson M, Nilsson N-O (1999) Evaluation of AFLP in Beta. Theor Appl Genet 98:845–852

    CAS  Google Scholar 

  • He SC, Lyznik A, Mackenzie S (1995) Pollen fertility restoration by nuclear gene Fr in cms bean—nuclear-directed alteration of a mitochondrial population. Genetics 139:955–962

    CAS  PubMed  Google Scholar 

  • Hjerdin-Panagopoulos A, Kraft T, Rading I, Tuvesson S, Nilsson N-O (2002) Three QTL regions for restoration of Owen CMS in sugar beet. Crop Sci 42:540–544

    Google Scholar 

  • Iwabuchi M, Kyozuka J, Shimamoto K (1993) Processing followed by complete editing of an altered mitochondrial atp6 RNA restores fertility of cytoplasmic male sterile rice. EMBO J 12:1437–1446

    CAS  PubMed  Google Scholar 

  • Koelewijn HP (1996) Sexual differences in reproductive characters in gynodioecious Plantago coronopus. Oikos 75:443–452

    Google Scholar 

  • Koelewijn HP, Van Damme JMM (1995) Genetics of male sterility in gynodioecious Plantago coronopus. II. Nuclear genetic variation. Genetics 139:1759–1775

    CAS  PubMed  Google Scholar 

  • Koizuka N, Imai R, Fujimoto H, Hayakawa T, Kimura Y, Kohno-Murase J, Sakai T, Kawasaki S, Imamura J (2003) Genetic characterization of a pentatricopeptide repeat protein gene, orf687, that restores fertility in the cytoplasmic male-sterile Kosena radish. Plant J 34:407–415

    Article  CAS  PubMed  Google Scholar 

  • Lander E, Green P, Abrahamson J, Barlow A, Daly M, Lincoln S, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    CAS  PubMed  Google Scholar 

  • Laporte V, Merdinoglu D, Saumitou-Laprade P, Butterlin G, Vernet P, Cuguen J (1998) Identification and mapping of RAPD and RFLP markers linked to a fertility restorer gene for a new source of cytoplasmic male sterility in Beta vulgaris ssp. maritima. Theor Appl Genet 96:989–996

    Article  CAS  Google Scholar 

  • Laporte V, Viard F, Béna G, Valero M, Cuguen J (2001) The spatial structure of sexual and cytonuclear polymorphism in the gynodioecious Beta vulgaris ssp. maritima: I/ at a local scale. Genetics 157:1699–1710

    CAS  PubMed  Google Scholar 

  • Laughan JR, Gabay-Laughan S (1983) Cytoplasmic male sterility in maize. Annu Rev Genet 17:27–48

    Article  PubMed  Google Scholar 

  • Leclercq P (1984) Identification de gènes de restauration de fertilité sur cytoplasmes stérilisants chez le tournesol. Agronomie 4:573–576

    Google Scholar 

  • Li X-Q, Jean M, Landry BS, Brown GG (1998) Restorer genes for different forms of Brassica cytoplasmic male sterility map to a single nuclear locus that modifies transcripts of several mitochondrial genes. Proc Natl Acad Sci USA 95:10032–10037

    Article  CAS  PubMed  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    PubMed  Google Scholar 

  • Mikami T, Kishima Y, Sugiura M, Kinoshita T (1985) Organelle genome diversity in sugar beet with normal and different sources of male sterile cytoplasms. Theor Appl Genet 71:166–171

    CAS  Google Scholar 

  • Owen FV (1942) inheritance of cross- and self-sterility and self-fertility in Beta vulgaris. J Agric Res 64:679–698

    Google Scholar 

  • Owen FV (1945) Cytoplasmically inherited male-sterility in sugar beet. J Agric Res 71:423–440

    Google Scholar 

  • Pruitt KD, Hanson MR (1991) Transcription of the Petunia mitochondrial cms-associated Pcf locus in male sterile and fertility-restored lines. Mol Gen Genet 227:348–355

    CAS  PubMed  Google Scholar 

  • Rae SJ, Aldam C, Dominguez I, Hoebrechts M, Barnes SR, Edwards KJ (2000) Development and incorporation of microsatellite markers into the linkage map of sugar beet (Beta vulgaris ssp.). Theor Appl Genet 100:1240–1248

    CAS  Google Scholar 

  • Saumitou-Laprade P, Cuguen J, Vernet P (1994) Cytoplasmic male sterility in plants: molecular evidence and the nucleocytoplasmic conflict. Trends Ecol Evol 9:431–435

    Article  Google Scholar 

  • Schnable PS, Wise RP (1998) The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci 3:175–180

    Article  Google Scholar 

  • Schondelmaier J, Jung C (1997) Chromosomal assignment of the nine linkage groups of sugar beet (Beta vulgaris L.) using primary trisomics. Theor Appl Genet 95:590–596

    Article  Google Scholar 

  • Shykoff J (1988) Maintenance of gynodioecy in Silene acaulis (Caryophyllaceae): stage-specific fecundity and viability selection. Am J Bot 75:844–850

    Google Scholar 

  • Small ID, Peeters N (2000) The PPR motif—a TPR-related motif prevalent in plant organellar proteins. Trends Biochem Sci 25:46–47

    Article  CAS  PubMed  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry. Freeman, New York

  • Tang VH, Chang R, Pring DR (1998) Cosegregation of single genes associated with fertility restoration and transcript processing of sorghum mitochondrial orf107 and urf209. Genetics 150:383–391

    Google Scholar 

  • Thompson JD, Tarayre M (2000) Exploring the genetic basis and proximate causes of female fertility advantage in gynodioecious Thymus vulgaris. Evolution 54:1510–1520

    CAS  PubMed  Google Scholar 

  • Touzet P (2002) Is rf2 a restorer gene of CMS-T in maize? Trends Plant Sci 7:434

    Article  CAS  PubMed  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Lee van de T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    CAS  PubMed  Google Scholar 

  • Wise RP, Pring DR (2002) Nuclear-mediated mitochondrial gene regulation and male fertility in higher plants: Light at the end of the tunnel? Proc Natl Acad Sci USA 99:10240–10242

    Article  CAS  PubMed  Google Scholar 

  • Yao F, Xu C, Yu S, Gao Y, Li X, Zhang Q (1997) Mapping and genetic analyses of two fertility restorer loci in the wild-abortive cytoplasmic male sterility system of rice (Oryza sativa L.). Euphytica 98:183–187

    Article  CAS  Google Scholar 

  • Yui R, Iketani S, Mikami T, Kubo T (2003) Antisense inhibition of mitochondrial pyruvate dehydrogenase E1a subunit in anther tapetum causes male sterility. Plant J 34:57–66

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Anne-Sophie Wepierre and Marianne De Paepe for preliminary flower phenotyping, Robert Dron for his technical expertise in plant care, Hans Koelewijn and Jean-François Arnaud for valuable comments on the manuscript. This work was supported by grants from the Région Nord-Pas de Calais and the European Community (European Regional Development Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Touzet.

Additional information

Communicated by H.C. Becker

Rights and permissions

Reprints and permissions

About this article

Cite this article

Touzet, P., Hueber, N., Bürkholz, A. et al. Genetic analysis of male fertility restoration in wild cytoplasmic male sterility G of beet. Theor Appl Genet 109, 240–247 (2004). https://doi.org/10.1007/s00122-004-1627-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-004-1627-7

Keywords

Navigation