Skip to main content
Log in

Fine mapping for double podding gene in chickpea

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

For the first time, fine mapping for sfl locus was carried out using a battery of new STMS and SNP markers. The target region was delimited to 92.6 Kb where seven annotated genes were found that could be candidate genes for the simple/double podding trait in chickpea.

Abstract

Four recombinant inbred populations (RIP-1, RIP-7, RIP-11, and CPR-01) were used to map the double podding gene (sfl) in chickpea. In RIP-1, the gene was initially mapped on linkage group (LG) 6 between the two sequence-tagged microsatellite site (STMS) markers TA120 and TR1. Eight new STMS markers were added onto LG6 in the target region and sfl locus was finally located between CAGM27819 and CAGM27777 markers within an interval of 2 cM. Seven out of the eight markers were mapped in RIP-7 and its reciprocal RIP-11 confirming the location of the sfl locus to a 4.8 cM interval flanked by TR44 and CAGM27705. Furthermore, using a high-density single nucleotide polymorphism (SNP) map of CPR-01, sfl was mapped to the same genomic region in a 5.1 cM interval between TR44 and the SNP scaffold1646p97220. Five pairs of near isogenic lines (NILs) and eight recombinant inbred lines (RILs) were used to refine this region in the chickpea physical map. Combining data from linkage analysis in four RIPs, marker physical positions and recombination events obtained in both pairs of NILs and selected RILs, sfl could be placed within a genomic window of 92.6 Kb. Seven annotated genes were extracted from this region. The regulator of axillary meristem-predicted gene could be a candidate gene for the simple/double podding gene. This study provides additional set of markers flanking and tightly linked to sfl locus that are useful for marker-assisted selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agarwal G, Jhanwar S, Priya P, Singh VK, Saxena MS, Parida SK, Garg R, Tyagi AK, Jain M (2012) Comparative analysis of kabuli chickpea transcriptome with desi and wild chickpea provides a rich resource for development of functional markers. PLoS ONE 7:e52443. doi:10.1371/journal.pone.0052443

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ali H, Shah TM, Iqbal N, Atta BM, Haq MA (2010) Mutagenic induction of double-podding trait in different genotypes of chickpea and their characterization by STMS marker. Plant Breed 129:116–119. doi:10.1111/j.1439-0523.2009.01659.x

    Article  CAS  Google Scholar 

  • Ali L, Madrid E, Varshney RK, Azam S, Millan T, Rubio J, Gil J (2014) Mapping and identification of a Cicer arietinum NSP2 gene involved in nodulation pathway. Theor Appl Genet 127:481–488. doi:10.1007/s00122-013-2233-3

    Article  PubMed  CAS  Google Scholar 

  • Ali L, Azam S, Rubio J, Kudapa H, Madrid E, Varshney RK, Castro P, Chen W, Gil J, Millan T (2015) Detection of a new QTL/gene for growth habit in chickpea CaLG1 using wide and narrow crosses. Euphytica 204:1–13. doi:10.1007/s10681-015-1369-4

    Article  CAS  Google Scholar 

  • Cho S, Kumar J, Shultz J, Anupama K, Tefera F, Muehlbauer F (2002) Mapping genes for double podding and other morphological traits in chickpea. Euphytica 128:285–292. doi:10.1023/A:1020872009306

    Article  CAS  Google Scholar 

  • Cobos MJ, Fernández MJ, Rubio J, Kharrat M, Moreno MT, Gil J, Millán T (2005) A linkage map of chickpea (Cicer arietinum L.) based on populations from Kabuli × Desi crosses: location of genes for resistance to fusarium wilt race 0. Theor Appl Genet 110:1347–1353. doi:10.1007/s00122-005-1980-1

    Article  PubMed  CAS  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil Trans R Soc B 363:557–572. doi:10.1098/rstb.2007.2170

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cordeiro G, Christopher M, Henry R, Reinke R (2002) Identification of microsatellite markers for fragrance in rice by analysis of the rice genome sequence. Mol Breed 9:245–250. doi:10.1023/A:1020350725667

    Article  CAS  Google Scholar 

  • Deokar AA, Ramsay L, Sharpe AG, Diapari M, Sindhu A, Bett K, Warkentin TD, Tar B (2014) Genome wide SNP identification in chickpea for use in development of a high density genetic map and improvement of chickpea reference genome assembly. BMC Genom 15:708. doi:10.1186/1471-2164-15-708

    Article  CAS  Google Scholar 

  • FAOSTAT (2015) http://faostat.fao.org/. Accessed 04 Aug 2014

  • Gao M, Zhu H (2013) Fine mapping of a major quantitative trait locus that regulates pod shattering in soybean. Mol Breed 32:485–491. doi:10.1007/s11032-013-9868-2

    Article  Google Scholar 

  • Gaur P, Gowda C, Knights E, Warkentin T, Açikgöz N, Yadav S, Kumar J (2007) Breeding achievements. In: Yadav SS, Redden R, Chen W, Sharma B (eds) Chickpea breeding and management. CABI Publishing, Wallingford, pp 391–416

    Chapter  Google Scholar 

  • Iruela M, Castro P, Rubio J, Cubero JI, Jacinto C, Millán T, Gil J (2007) Validation of a QTL for resistance to ascochyta blight linked to resistance to fusarium wilt race 5 in chickpea (Cicer arietinum L.). Eur J Plant Pathol 119:29–37. doi:10.1007/978-1-4020-6065-6_4

    Article  Google Scholar 

  • Jain M, Misra G, Patel RK, Priya P, Jhanwar S, Khan AW, Shah N, Singh VK, Garg R, Jeena G, Yadav M, Kant C, Sharma P, Yadav G, Bhatia S, Tyagi AK, Chattopadhyay D (2013) A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J 74:715–729. doi:10.1111/tpj.12173

    Article  PubMed  CAS  Google Scholar 

  • Johnson HW, Bernard RL (1962) Soybean genetics and breeding. Adv Agron 14:149–221

    Article  Google Scholar 

  • Jun T-H, Michel AP, Mian MAR (2011) Development of soybean aphid genomic SSR markers using next generation sequencing. Genome 54:360–367. doi:10.1139/g11-002

    Article  PubMed  CAS  Google Scholar 

  • Kalendar R, Lee D, Schulman AH (2009) Fast PCR software for PCR primer and probe design and repeat search. G3 Genes Genom Genet 3:1–14

    Google Scholar 

  • Khan A, Akhtar A (1934) The Inheritance of petal colour in gram. Agric Lve-Stk 4:127–155

    Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175. doi:10.1111/j.1469-1809.1943.tb02321.x

    Article  Google Scholar 

  • Kujur A, Bajaj D, Saxena MS, Tripathi S, Upadhyaya HD, Gowda CLL, Singh S, Jain M, Tyagi AK, Parida SK (2013) Functionally relevant microsatellite markers from chickpea transcription factor genes for efficient genotyping applications and trait association mapping. DNA Res. doi:10.1093/dnares/dst015 (dst015)

    PubMed  PubMed Central  Google Scholar 

  • Kumar J, Rao BV (2001) Registration of ICCV 96029, a super early and double podded chickpea germplasm. Crop Sci 41(2):605–606. doi:10.2135/cropsci2001.412605x

    Article  Google Scholar 

  • Kumar J, Srivastava RK, Ganesh M (2000) Penetrance and expressivity of the gene for double podding in chickpea. J Hered 91(3):234–236. doi:10.1093/jhered/91.3.234

    Article  PubMed  CAS  Google Scholar 

  • Ladizinsky G, Adler A (1976) The origin of chickpea Cicer arietinum L. Euphytica 25:211–217. doi:10.1007/BF00041547

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lim J-H, Yang H-J, Jung K-H, Yoo S-C, Paek N-C (2014) Quantitative trait locus mapping and candidate gene analysis for plant architecture traits using whole genome re-sequencing in rice. Mol Cells 37:149. doi:10.14348/molcells.2014.2336

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Madrid E, Seoane P, Claros MG, Barro F, Rubio J, Gil J, Millán T (2014) Genetic and physical mapping of the QTLAR3 controlling blight resistance in chickpea (Cicer arietinum L). Euphytica 198:69–78. doi:10.1007/s10681-014-1084-6

    Article  CAS  Google Scholar 

  • Muehlbauer F, Singh K (1987) Genetics of chickpea. In: Saxena MC, Singh KB (eds) The Chickpea. CABI Publ, Wallingford, pp 99–125

    Google Scholar 

  • Müller D, Schmitz G, Theres K (2006) Blind homologous R2R3 Myb genes control the pattern of lateral meristem initiation in Arabidopsis. Plant Cell Online 18:586–597. doi:10.1105/tpc.105.038745

    Article  CAS  Google Scholar 

  • Radhika P, Gowda SJM, Kadoo NY, Mhase LB, Jamadagni BM, Sainani MN, Chandra S, Gupta VS (2007) Development of an integrated intraspecific map of chickpea (Cicer arietinum L.) using two recombinant inbred line populations. Theor Appl Genet 115:209–216. doi:10.1007/s00122-007-0556-7

    Article  PubMed  CAS  Google Scholar 

  • Rajesh P, Tullu A, Gil J, Gupta V, Ranjekar P, Muehlbauer F (2002) Identification of an STMS marker for the double-podding gene in chickpea. Theor Appl Genet 105:604–607. doi:10.1007/s00122-002-0930-4

    Article  PubMed  CAS  Google Scholar 

  • Rubio J, Moreno MT, Cubero JI, Gil J (1998) Effect of the gene for double pod in chickpea on yield, yield components and stability of yield. Plant Breed 117:585–587. doi:10.1111/j.1439-0523.1998.tb02214.x

    Article  Google Scholar 

  • Rubio J, Flores F, Moreno MT, Cubero JI, Gil J (2004) Effects of the erect/bushy habit, single/double pod and late/early flowering genes on yield and seed size and their stability in chickpea. Field Crops Res 90:255–256. doi:10.1016/j.fcr.2004.03.005

    Article  Google Scholar 

  • Sheldrake AR, Saxena NP, Krishnamurthy L (1978) The expression and influence on yield of the ‘double-podded’ character in chickpeas (Cicer arietinum L.). Field Crops Res 1:243–253. doi:10.1016/0378-4290(78)90029-1

    Article  Google Scholar 

  • Singh K (1987) Chickpea breeding. In: Saxena MC, Singh KB (eds) The chickpea. CABI Publ, Wallingford, pp 127–162

    Google Scholar 

  • Singh O, Van Rheenen H (1989) A possible role for the double-podded character in stabilizing the grain yield of chickpea. Indian J Pulses Res 2:97–101

    CAS  Google Scholar 

  • Singh O, Van Rheenen H (1994) Genetics and contributions of the multiseeded and double-podded characters to grain yield of chickpea. Indian J Pulses Res 7:97–102

    Google Scholar 

  • Tar’an B, Warkentin TD, Tullu A, Vandenberg A (2007) Genetic mapping of ascochyta blight resistance in chickpea (Cicer arietinum L.) using a simple sequence repeat linkage map. Genome 50:26–34. doi:10.1007/s00122-013-2080-2

    Article  PubMed  Google Scholar 

  • Taran B, Warkentin TD, Vandenberg A (2013) Fast track genetic improvement of ascochyta blight resistance and double podding in chickpea by marker-assisted backcrossing. Theor Appl Genet 126:1639–1647

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen JW (2004). MAPQIL® 5, Software for the mapping of quantitative trait loci in experimental populations. Kyazma B.V., Wagenningen, The Netherlands

  • Varshney R, Hoisington D, Upadhyaya H, Gaur P, Nigam S, Saxena K, Vadez V, Sethy N, Bhatia S, Aruna R, Channabyre Gowda MV, Singh N (2007) Molecular genetics and breeding of grain legume crops for the semi-arid tropics. In: Varshney R, Tuberosa R (eds) Genomics-assisted crop improvement. Springer, Netherlands, pp 207–241

    Chapter  Google Scholar 

  • Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Cannon S, Baek J, Rosen BD, Tar’an B et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246. doi:10.1038/nbt.2491

    Article  PubMed  CAS  Google Scholar 

  • Warkentin T, Banniza S, Vandenberg A (2005) CDC frontier kabuli chickpea. Can J Plant Sci 85:909–910

    Article  Google Scholar 

  • Winter P, Pfaff T, Udupa SM, Hüttel B, Sharma PC, Sahi S, Arreguin-Espinoza R, Weigand F, Muehlbauer FJ, Kahl G (1999) Characterization and mapping of sequence-tagged microsatellite sites in the chickpea (Cicer arietinum L.) genome. Mol Gen Genet 262:90–101. doi:10.1007/s004380051063

    Article  PubMed  CAS  Google Scholar 

  • Winter P, Benko-Iseppon AM, Hüttel B, Ratnaparkhe M, Tullu A, Sonnante G, Pfaff T, Tekeoglu M, Santra D, Sant VJ, Rajesh PN, Kahl G, Muehlbauer FJ (2000) A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum × C. reticulatum cross: localization of resistance genes for fusarium wilt races 4 and 5. Theor Appl Genet 101:1155–1163. doi:10.1007/s001220051592

    Article  CAS  Google Scholar 

  • Yanhui C, Xiaoyuan Y, Kun H, Meihua L, Jigang L, Zhaofeng G, Zhiqiang L, Yunfei Z, Xiaoxiao W, Xiaoming Q, Yunping S, Li Z, Xiaohui D, Jingchu L, Xing-Wang D, Zhangliang C, Hongya G, Li-Jia Q (2006) The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol 60:107–124. doi:10.1007/s11103-005-2910-y

    Article  PubMed  CAS  Google Scholar 

  • Yasar M, Ceylan FO, Ikten C, Toker C (2014) Comparison of expressivity and penetrance of the double podding trait and yield components based on reciprocal crosses of kabuli and desi chickpeas (Cicer arietinum L.). Euphytica 196:331–339. doi:10.1007/s10681-013-1036-6

    Article  Google Scholar 

  • Zhu Y, Cao Z, Xu F, Huang Y, Chen M, Guo W, Zhou W, Zhu J, Meng J, Zou J, Jiang L (2012) Analysis of gene expression profiles of two near-isogenic lines differing at a QTL region affecting oil content at high temperatures during seed maturation in oilseed rape (Brassica napus L.). Theor Appl Genet 124:515–531. doi:10.1007/s00122-011-1725-2

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the project INIA contract RTA2013-00025, co-financed by the European Union through the ERDF 2014–2020 “Programa Operativo de Crecimiento Inteligente”. Ali L acknowledges PhD fellowship from Syrian Ministry of High Education. Funding for the Canadian research component was provided by the Agriculture Development Fund of the Saskatchewan Ministry of Agriculture and by the Saskatchewan Pulse Growers. The authors would like to thank Dr. F Madueño from the IBMCP (CSIC-UPV, Spain) for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Millan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by B. Diers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, L., Deokar, A., Caballo, C. et al. Fine mapping for double podding gene in chickpea. Theor Appl Genet 129, 77–86 (2016). https://doi.org/10.1007/s00122-015-2610-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2610-1

Keywords

Navigation