Skip to main content
Log in

Fine mapping and candidate gene analysis of a major locus controlling ovule abortion and seed number per silique in Brassica napus L.

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A major QTL controlling ovule abortion and SN was fine-mapped to a 80.1-kb region on A8 in rapeseed, and BnaA08g07940D and BnaA08g07950D are the most likely candidate genes.

Abstract

The seed number per silique (SN), an important yield determining trait of rapeseed, is the final consequence of a complex developmental process including ovule initiation and the subsequent ovule/seed development. To explore the genetic mechanism regulating the natural variation of SN and its related components, quantitative trait locus (QTL) mapping was conducted using a doubled haploid (DH) population derived from the cross between C4-146 and C4-58B, which showed significant differences in SN and aborted ovule number (AON), but no obvious differences in ovule number (ON). QTL analysis identified 19 consensus QTLs for six SN-related traits across three environments. A novel QTL on chromosome A8, un.A8, which associates with multiple traits, except for ON, was stably detected across the three environments. This QTL explained more than 50% of the SN, AON and percentage of aborted ovules (PAO) variations as well as a moderate contribution on silique length (SL) and thousand seed weight (TSW). The C4-146 allele at the locus increases SN and SL but decreases AON, PAO and TSW. Further fine mapping narrowed down this locus into an 80.1-kb interval flanked by markers BM1668 and BM1672, and six predicted genes were annotated in the delimited region. Expression analyses and DNA sequencing showed that two homologs of Arabidopsis photosystem I subunit F (BnaA08g07940D) and zinc transporter 10 precursor (BnaA08g07950D) were the most promising candidate genes underlying this locus. These results provide a solid basis for cloning un.A8 to reduce the ovule abortion and increase SN in the yield improvement of rapeseed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Cai DF, Xiao YJ, Yang W, Ye W, Wang B, Younas M, Wu JS, Liu KD (2014a) Association mapping of six yield-related traits in rapeseed (Brassica napus L.). Theor Appl Genet 127:85–96

    Article  CAS  Google Scholar 

  • Cai GQ, Yang QY, Yi B, Fan CC, Edwards D, Batleyet J, Zhou YM (2014b) A complex recombination pattern in the genome of allotetraploid Brassica napus as revealed by a high-density genetic map. PLoS ONE 9(10):e109910

    Article  Google Scholar 

  • Cai GQ, Yang QY, Chen H, Yang Q, Zhang CY, Fan CC, Zhou YM (2016) Genetic dissection of plant architecture and yield-related traits in Brassica napus. Sci Rep 6:21625

    Article  CAS  Google Scholar 

  • Chalhoub B, Denoeud F, Liu SY, Parkin IAP, Tang HB, Wang XY, Chiquet J, Belcram H, Tong CB, Samans B et al (2014) Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome. Science 345:950–953

    Article  CAS  Google Scholar 

  • Charlesworth D (1989) Why do plants produce so many more ovules than seeds. Nature 338:21–22

    Article  Google Scholar 

  • Chen W, Zhang YS, Yao JB, Ma CZ, Tu JX, Fu TD (2011) Quantitative trait loci mapping for two seed yield component traits in an oilseed rape (Brassica napus) cross. Plant Breed 130:640–646

    Article  Google Scholar 

  • Chen F, Zhang JF, Qi KC, Pu HM, Chen S (2012) The analysis on diversity of germplasm resource in Brassica napus L. Jiangsu Agric Sci 11:98–99

    Google Scholar 

  • Fan CC, Cai GQ, Qin J, Li QY, Yang MG, Wu JZ, Fu TD, Liu KD, Zhou YM (2010) Mapping of quantitative trait loci and development of allele-specific markers for seed weight in Brassica napus. Theor Appl Genet 121:1289–1301

    Article  CAS  Google Scholar 

  • Goffinet B, Gerber S (2000) Quantitative trait loci: a meta-analysis. Genetics 155:463–473

    Article  CAS  Google Scholar 

  • Hu LM, Zhang H, Yang QY, Meng QW, Han SQ, Nwafor CC, Khan MHU, Fan CC, Zhou YM (2018) Promoter variations in a homeobox gene, BnA10.LMI1, determine lobed leaves in rapeseed (Brassica napus L.). Theor Appl Genet 131:2699–2708

    Article  CAS  Google Scholar 

  • Khan SU, Jiao YM, Liu S, Zhang KP, Khan MHU, Zhai YG, Olalekan A, Fan CC, Zhou YM (2019) Genome-wide association studies in the genetic dissection of ovule number, seed number, and seed weight in Brassica napus L. Ind crop prod 142:111877

    Article  CAS  Google Scholar 

  • Khan MHU, Hu LM, Zhu MS, Zhai YG, Khan SU, Ahmar S, Olalekan A, Zhang KP, Fan CC, Zhou YM (2020) Targeted mutagenesis of EOD3 gene in B. napus L. regulates seed production. J Cell Physiol 236:1996–2007

    Article  Google Scholar 

  • Li YP, Cheng Y, Cai GQF, CC, Zhou, YM, (2014) Cytological basis and molecular mechanism of variation in number of seeds per pod in Brassica napus. Sci Agric Sin 8:822–831

    Google Scholar 

  • Li SP, Chen L, Zhang LW, Li X, Liu Y, Wu ZK, Dong FM, Wan LL, Liu KD, Hong DF, Yang GS (2015) BnaC9.SMG7b Functions as a positive regulator of the number of seeds per silique in Brassica napus by regulating the formation of functional female gametophytes. Plant Physiol 169:2744–2760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lincoln S, Daly M, Lander E (1992) Constructing genetic maps with MAPMAKER/EXP 3.0, 3rd edn. Whitehead Institute Technical report, Whitehead Institute, Cambridge

  • Mendham NJ, Shipway PA, Scott RK (1981) The effects of delayed sowing and weather on growth, development and yield of winter oil-seed rape (Brassica napus). J Agric Sci 96:389–416

    Article  Google Scholar 

  • Moles AT, Ackerly DD, Webb CO, Tweddle JC, Dickie JB, Westoby M (2005) A brief history of seed size. Science 307:576–580

    Article  CAS  Google Scholar 

  • Qi LP, Mao L, Sun CM, Pu YY, Fu TD, Ma CZ, Shen JX, Tu JX, Yi B, Wen J (2014) Interpreting the genetic basis of silique traits in Brassica napus using a joint QTL network. Plant Breed 133:52–60

    Article  CAS  Google Scholar 

  • Radoev M, Becker HC, Ecke W (2008) Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics 179:1547–1558

    Article  CAS  Google Scholar 

  • Shi JQ, Li RY, Qiu D, Jiang CC, Long Y, Morgan C, Bancroft I, Zhao JY, Meng JL (2009) Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182:851–861

    Article  CAS  Google Scholar 

  • Shi JQ, Zhan JP, Yang YH, Ye J, Huang SM, Li RY, Wang XF, Liu GH, Wang HZ (2015) Linkage and regional association analysis reveal two new tightly-linked major-QTLs for pod number and seed number per pod in rapeseed (Brassica napus L.). Sci Rep. https://doi.org/10.1038/srep14481

    Article  PubMed  PubMed Central  Google Scholar 

  • Song JM, Guan ZL, Hu JL, Guo CC, Yang ZQ, Wang S, Liu DX, Wang B, Lu SP, Zhou R, Xie WZ, Cheng YF, Zhang YT, Liu KD, Yang QY, Chen LL, Guo L (2020) Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat Plants 6:34–45

    Article  CAS  Google Scholar 

  • Sun LJ, Wang XD, Yu KJ, Li WJ, Peng Q, Chen F, Zhang W, Fu SX, Xiong DQ, Chu P, Guan RZ, Zhang JF (2018) Mapping of QTLs controlling seed weight and seed-shape traits in Brassica napus L. using a high-density SNP map. Euphytica. https://doi.org/10.1007/s10681-018-2303-3

    Article  Google Scholar 

  • Van Went J, Cresti M (1988) Pre-fertilization degeneration of both synergids in Brassica campestris ovules. Sex Plant Reprod 1:208–216

    Article  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2004) Windows QTL Cartographer 2.0. Department of Statistics, North Carolina State University, Raleigh

  • Wang XJ, Mathieu A, Cournède PH, Allirand JM, Jullien A, de Reffye P, Zhang BG (2011) Variability and regulation of the number of ovules, seeds and pods according to assimilate availability in winter oilseed rape (Brassica napus L.). Field Crops Res 122:60–69

    Article  Google Scholar 

  • Wang H, Yan M, Xiong M, Wang PF, Liu Y, Xin Q, Wan LL, Yang GS, Hong DF (2020) Genetic dissection of thousand-seed weight and fine mapping of cqSW.A03-2 via linkage and association analysis in rapeseed (Brassica napus L.). Theor Appl Genet 133:1321–1335

    Article  CAS  Google Scholar 

  • Xu WJ, Fu Y, Dong HL, Chen ZF, Zhang QY, Mao SS, He YJ, Qian W (2014) Morphologic and physiologic characterization of an ovule abortion mutant in Brassica napus. Sci Agric Sin 47:2062–2068

    CAS  Google Scholar 

  • Yang YH, Shi JQ, Wang XF, Liu GH, Wang HZ (2016) Genetic architecture and mechanism of seed number per pod in rapeseed: elucidated through linkage and near-isogenic line analysis. Sci Rep 6:24124

    Article  CAS  Google Scholar 

  • Yang YH, Wang Y, Zhan JP, Shi JQ, Wang XF, Liu GH, Wang HZ (2017) Genetic and cytological analyses of the natural variation of seed number per pod in rapeseed (Brassica napus L.). Front Plant Sci. https://doi.org/10.3389/fpls.2017.01890

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang LW, Yang GS, Liu PW, Hong DF, Li SP, He QB (2011) Genetic and correlation analysis of silique-traits in Brassica napus L. by quantitative trait locus mapping. Theor Appl Genet 122:21–31

    Article  Google Scholar 

  • Zhang LW, Li SP, Chen L, Yang GS (2012) Identification and mapping of a major dominant quantitative trait locus controlling seeds per silique as a single Mendelian factor in Brassica napus L. Theor Appl Genet 125:695–705

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Grants 2015CB150200 from the National Key Basic Research Program of China. This study was also supported by the National Natural Science Foundation of China (No. 31671279, 31371240 and 31971976).

Author information

Authors and Affiliations

Authors

Contributions

C.C.F. and Y.M.Z conceived and designed the experiments. Y.M.J., K.P.Z., G.Q.C., X.Z., H.Z. and L.M.H performed the experiments. C.C.F., Y.M.J., O.A., B.R.W. and Y.M.Z wrote the manuscript. K.D.Y. and S.Q.H analyzed the bioinformatics.

Corresponding author

Correspondence to Chuchuan Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Annaliese S Mason.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1752 kb)

Supplementary file2 (XLSX 2774 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, Y., Zhang, K., Cai, G. et al. Fine mapping and candidate gene analysis of a major locus controlling ovule abortion and seed number per silique in Brassica napus L.. Theor Appl Genet 134, 2517–2530 (2021). https://doi.org/10.1007/s00122-021-03839-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-021-03839-6

Navigation