Skip to main content
Log in

Mapping of Pi, a gene conferring pink leaf in ornamental kale (Brassica oleracea L. var. acephala DC)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

We previously found that pink leaf is conferred by a single semi-dominant gene in ornamental kale. To map this gene, we constructed an F2 segregating population containing 184 individuals by crossing W02–7, a white-leaved inbred line, with P02–9, a pink-leaved inbred line. We screened 297 simple sequence repeat (SSR) and 437 sequence-related amplified polymorphism (SRAP) markers using bulked segregant analysis. We identified one SSR and seven SRAP markers that linked tightly to the pink-leaf (Pi) gene. To obtain more specific genomic markers, we converted six SRAPs to sequence-characterized amplified region (SCAR) markers. We constructed a genetic linkage map of the Pi locus using one SSR and five SCAR markers, spanning a total interval of 15.0 cM. One SSR marker, Ni2C12, and one co-dominant SCAR marker, Boac04, flanked Pi on either side at distances of 0.6 and 2.4 cM, respectively. Based on the reference genome sequence of Brassica oleracea, we positioned Pi on the top of chromosome C3. We also detected that pink hypocotyl co-segregated with pink inner leaf. These markers provide the basis for fine-scale mapping and cloning of Pi, and may be used for marker-assisted selection in ornamental kale breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Brown AF, Yousef GG, Chebrolu KK, Byrd RW, Everhart KW, Thomas A, Reid RW, Parkin IAP, Sharpe AG, Guzman I, Jackson EW (2014) High density single nucleotide polymorphism (SNP) array mapping in Brassica oleracea: identification of QTL associated with carotenoid variation in broccoli florets. Theor Appl Genet 127:2051–2064

    Article  CAS  Google Scholar 

  • Chiu L, Zhou X, Sarah B, Wu X, Ronald LP, Li L (2010) The purple cauliflower arises from activation of a MYB transcription factor. Plant Physiol 154:1470–1480

    Article  CAS  Google Scholar 

  • Crisp P, Walkey DGA, Bellman E, Roberts E (1975) A mutation affecting curd colour in cauliflower (Brassica oleracea L. var. botrytis DC). Euphytica 24:173–176

    Article  Google Scholar 

  • Feng H, Li Y, Liu Z, Liu J (2012) Mapping of or, a gene conferring orange color on the inner leaf of the Chinese cabbage (Brassica rapa L. ssp. pekinensis). Mol Breed 29:235–244

    Article  Google Scholar 

  • Horejsi T, Box MJ, Staub EJ (1999) Efficiency of randomly amplified polymorphic DNA to sequence characterized amplified region marker conversion and their comparative polymerase chain reaction sensitivity in cucumber. J Am Soc Hort Sci. 124:128–135

    CAS  Google Scholar 

  • Kaga A, Ohnishi M, Ishii T, Kamijima O (1996) A genetic linkage map of azuki bean constructed with molecular and morphological markers using an interspecific population (Vigna angularis × V. nakashimae). Theor Appl Genet 93:658–663

    Article  CAS  Google Scholar 

  • Koes R, Verweij W, Quattrocchio F (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10:236–242

    Article  CAS  Google Scholar 

  • Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Li L, Garvin DF (2003) Molecular mapping of Or, a gene inducing β-carotene accumulation in cauliflower (Brassica oleracea var. botrytis). Genome 47:588–594

    Article  Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461

    Article  CAS  Google Scholar 

  • Li L, Paolillo DJ, Parthasarathy MV, DiMuzio EM, Garvin DF (2001) A novel gene mutation that confers abnormal patterns of β-carotene accumulation in cauliflower (Brassica oleracea var. botrytis). Plant J 26:59–67

    Article  CAS  Google Scholar 

  • Li L, Lu S, Halloran D, Garvin D (2003) High-resolution genetic and physical mapping of the cauliflower high-β-carotene gene Or (Orange). Mol Genet Genomics 270:132–138

    Article  CAS  Google Scholar 

  • Liu R, Meng J (2003) MapDraw: a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas 25:317–321

    PubMed  Google Scholar 

  • Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin IAP et al (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5:3930

    Article  CAS  Google Scholar 

  • Lu S, Joyce VE, Zhou XJ, Alex BL, Diana MO, Kelly MC, Brian JC, Dominick JP, David FG, Julia V, Leon VK, Hendrik K, Elizabeth DE, Cao J, Li L (2006) The cauliflower Or gene encodes a DnaJ cysteine-rich domaincontaining protein that mediates high levels of β-carotene accumulation. Plant Cell 18:3594–3605

    Article  CAS  Google Scholar 

  • Martin C, Gerats T (1993) Control of pigment biosynthesis genes during petal development. Plant Cell 5:1253–1264

    Article  CAS  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of marker linked to disease-resistance gene by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  CAS  Google Scholar 

  • Rieseberg LH, Ellstrand NC (1993) What can molecular and morphological markers tell us about plant hybridization. Crit Rev Plant Sci 12:213–241

    CAS  Google Scholar 

  • Schneeberger K, Ossowski S, Lanz C, Juul T, Petersen AH, Nielsen KL, Jørgensen J, Weigel D, Andersen SU (2009) SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nat Methods 6:550–551

    Article  CAS  Google Scholar 

  • Van Ooijen JW (2006) Joinmap 4.0®, Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • Vidal JR, Delavault P, Coarer M, Defontaine A (2000) Design of grapevine (Vitis vinifera L.) cultivar-specific SCAR primers for PCR fingerprinting. Theor Appl Genet 101:1194–1201

    Article  CAS  Google Scholar 

  • Wang G, Zhang F, Yu Y, Zhang D, Zhao X (2007) Identification of SCAR markers linked to orange head leaf gene in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Acta Horti Sin 34:217–220

    CAS  Google Scholar 

  • Wang Y, Liu Z, Li Y, Zhang Y, Yang X, Feng H (2013) Identification of sequence-related amplified polymorphism (SRAP) markers linked to the red leaf trait in ornamental kale (Brassica oleracea L. var. acephala). Genet Mol Res 12:870–877

    Article  CAS  Google Scholar 

  • Yan Z, Denneboom C, Hattendorf A, Dolstra O, Debener T, Stam P, Visser PB (2005) Construction of an integrated map of rose with AFLP, SSR, PK, RGA, RFLP, SCAR and morphological markers. Theor Appl Genet 110:766–777

    Article  CAS  Google Scholar 

  • Yu Y, Zhang Y, Zhang D (2009) SRAP markers linked to purple trait in Chinese cabbage. Mol Plant Breed 7:573–578

    Article  CAS  Google Scholar 

  • Zhang F, Wang G, Wang M, Liu X, Zhao X, Yu Y, Zhang D, Yu S (2008) Identification of SCAR markers linked to or, a gene inducing beta-carotene accumulation in Chinese cabbage. Euphytica 164:463–471

    Article  CAS  Google Scholar 

  • Zhang J, Li H, Zhang M, Hui M, Wang Q, Li L, Zhang L (2013) Fine mapping and identification of candidate Br-or gene controlling orange head of Chinese cabbage (Brassica rapa L. ssp. pekinensis). Mol Breeding 32:799–805

    Article  CAS  Google Scholar 

  • Zhu P, Wei Y (2009) Compatibility, production of interspecific F1 and BC1 between improved CMS Brassica campestris ssp. pekinensis and B. oleracea var. acephala. J Plant Breed Crop Sci 1:265–269

    CAS  Google Scholar 

  • Zhu P, Zhang J, Fang X, Wang X, Huang J (2012) Heredity analyses of pink leaf in Brassica oleracea var. acephala. Adv Ornam Hortic China 1:177–180

    Google Scholar 

Download references

Acknowledgments

We thank Professor Zhongyun Piao (College of Horticulture, Shenyang Agricultural University) for his kindly help in database analysis. This study was funded by National Natural Science Foundation of China (# 31101566).

Author contribution

P Zhu developed molecular markers, carried out sequence analysis, and wrote draft manuscript. M Cheng and Y Xiong carried out the phenotyping and genotyping steps, developed SCAR and morphological markers, and selected recombinants. X Feng and C Liu developed SSR markers and constructed genetic map. Y Kang developed SRAP and SCAR markers. All authors have read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfang Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, P., Cheng, M., Feng, X. et al. Mapping of Pi, a gene conferring pink leaf in ornamental kale (Brassica oleracea L. var. acephala DC). Euphytica 207, 377–385 (2016). https://doi.org/10.1007/s10681-015-1555-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1555-4

Keywords

Navigation