Skip to main content
Log in

Allelic variants in the PRR37 gene and the human-mediated dispersal and diversification of sorghum

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Allele phylogenetic analysis of the sorghum flowering-time gene PRR37 provided new insight into the human-mediated selection of a key adaptive gene that occurred during sorghum’s diversification and worldwide dispersal.

Abstract

The domestication and spread of the tropical cereal sorghum is associated with the historic movement of humans. We show that an allelic series at PRR37 (pseudo-response regulator 37), a circadian clock-associated transcription factor, was selected in long-day ecosystems worldwide to permit floral initiation and grain production. We identified a series of loss-of-function (photoperiod-insensitive) alleles encoding truncated PRR37 proteins, alleles with key amino acid substitutions in the pseudo-receiver domain, and a novel splice variant in which the pseudo-receiver domain is truncated. Each PRR37 allelic variant was traced to a specific geographic location or specialized agronomic type. We present a graphical model that shows evidence of human selection and gene flow of the PRR37 allelic variants during the global dispersal and agronomic diversification of sorghum. With the recent identification of the Ghd7 gene as an important regulator of flowering date in sorghum, we briefly examine whether loss-of-function Ghd7 allelic variants were selected prior to the human-mediated movement of sorghum from its equatorial center of origin to temperate climates worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Beales J, Turner A, Griffiths S, Snape J, Laurie D (2007) A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet 115:721–733

    Article  CAS  PubMed  Google Scholar 

  • Berenji J, Dahlberg J, Sikora V, Latkovi D (2011) Origin, history, morphology, production, improvement, and utilization of broomcorn [Sorghum bicolor (L.) Moench] in Serbia. Econ Bot 65:190–208

    Article  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Broadhead DM, Coleman OH (1973) Registration of Dale sweet sorghum. Crop Sci 13:776

    Article  Google Scholar 

  • Clement M, Posada D, Crandall K (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660

    Article  CAS  PubMed  Google Scholar 

  • Doggett H (1988) Sorghum, 2nd edn. Wiley-Blackwell, New York

    Google Scholar 

  • Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A (2004) Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Gene Dev 18:926–936

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Farré EM, Liu T (2013) The PRR family of transcriptional regulators reflects the complexity and evolution of plant circadian clocks. Curr Opin Plant Biol 16:621–629

    Article  PubMed  Google Scholar 

  • Gao H, Jin M, Zheng X-M, Chen J, Yuan D, Xin Y, Wang M, Huang D, Zhang Z, Zhou K, Sheng P, Ma J, Ma W, Deng H, Jiang L, Liu S, Wang H, Wu C, Yuan L, Wan J (2014) Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proc Natl Acad Sci. doi:10.1073/pnas.1418204111

    Google Scholar 

  • Gilding EK, Frère CH, Cruickshank A, Rada AK, Prentis PJ, Mudge AM, Mace ES, Jordan DR, Godwin ID (2013) Allelic variation at a single gene increases food value in a drought-tolerant staple cereal. Nature Commun 4:1483. doi:10.1038/ncomms2450

    Article  Google Scholar 

  • Harlan JR, Stemler ABL (1976) The races of sorghum in Africa. In: Harlan JR, de Wet JMJ, Stemler ABL (eds) Origins of African plant domestication. Mouton Press, The Hague, pp 465–478

    Chapter  Google Scholar 

  • He Z, Bonjean APA (2010) Cereals in China. CIMMYT, Mexico

    Google Scholar 

  • Hitchcock AS (1921) Manual of farm grasses. United States Department of Agriculture, Washington, DC

    Book  Google Scholar 

  • House LR, Gomez M, Murty DS, Sun Y, Verma BN (2000) Development of some agricultural industries in several African and Asian countries. In: Smith CW, Frederiksen RA (eds) Sorghum: origin, history, technology, and production. John Wiley and Sons, New York, pp 131–190

    Google Scholar 

  • Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C (2000) Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290:344–347

    Article  CAS  PubMed  Google Scholar 

  • Jones H, Leigh FJ, Mackay I, Bower MA, Smith LMJ, Charles MP, Jones G, Jones MK, Brown TA, Powell W (2008) Population-based resequencing reveals that the flowering time adaptation of cultivated barley originated east of the Fertile Crescent. Mol Biol Evol 25:2211–2219

    Article  CAS  PubMed  Google Scholar 

  • Karper RE, Quinby JR (1947) New varieties of sorghum. Texas Agricultural Experiment Station, College Station

    Google Scholar 

  • Karper RE, Quinby JR, Kramer NW (1951) New varieties of sorghum. Texas Agricultural Experiment Station, College Station

    Google Scholar 

  • Kimber CT (2001) Origin of domesticated sorghum and its early diffusion to India and China. In: Smith CW, Frederiksen RA (eds) Sorghum: origin, history, technology and production. Wiley and Sons Inc, New York, pp 3–98

    Google Scholar 

  • Klein RR, Mullet JE, Jordan DR, Miller FR, Rooney WL, Menz MA, Franks CD, Klein PE (2008) The effect of tropical sorghum conversion and inbred development on genome diversity as revealed by high-resolution genotyping. Crop Sci 48:S12–S26

    Article  Google Scholar 

  • Komatsuda T, Pourkheirandish M, He C, Azhaguvel P, Kanamori H, Perovic D, Stein N, Graner A, Wicker T, Tagiri A, Lundqvist U, Fujimura T, Matsuoka M, Matsumoto T, Yano M (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc Natl Acad Sci 104:1424–1429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koo B-H, Yoo S-C, Park J-W, Kwon C-T, Lee B-D, An G, Zhang Z, Li J, Li Z, Paek N-C (2013) Natural variation in OsPRR37 regulates heading date and contributes to rice cultivation at a wide range of latitudes. Mol Plant 6:1877–1888

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Li X, Shannon LM, Yeh C-T, Wang ML, Bai G, Peng Z, Li J, Trick HN, Clemente TE, Doebley J, Schnable PS, Tuinstra MR, Tesso TT, White F, Yu J (2012) Parallel domestication of the Shattering1 genes in cereals. Nat Genet 44:720–724

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lindgren J, Sjovall P, Carney RM, Uvdal P, Gren JA, Dyke G, Schultz BP, Shawkey MD, Barnes KR, Polcyn MJ (2014) Skin pigmentation provides evidence of convergent melanism in extinct marine reptiles. Nature 506:484–488

    Article  CAS  PubMed  Google Scholar 

  • Lister DL, Thaw S, Bower MA, Jones H, Charles MP, Jones G, Smith LMJ, Howe CJ, Brown TA, Jones MK (2009) Latitudinal variation in a photoperiod response gene in European barley: insight into the dynamics of agricultural spread from ‘historic’ specimens. J Archaeol Sci 36:1092–1098

    Article  Google Scholar 

  • Manceau M, Domingues VS, Linnen CR, Rosenblum EB, Hoekstra HE (2010) Convergence in pigmentation at multiple levels: mutations, genes and function. Philos Trans R Soc B Biol Sci 365:2439–2450

    Article  CAS  Google Scholar 

  • Mann JA, Kimber CT, Miller FR (1983) The origin and early cultivation of sorghums in Africa. Texas Agricultural Experimental Station College Station, pp 107–153

  • Martin AH (1936) Yearbook of Agriculture. United States Department of Agriculture, Washington, DC, pp 523–623

    Google Scholar 

  • Martin JA, Leonard WH (1949) Principles of field crop production, 1st edn. The McMillan Company, New York

    Google Scholar 

  • Maunder AB (2001) History of cultivar development in the United States: from “memoirs of A.B. Maunder-sorghum breeder”. In: Smith CW, Frederiksen RA (eds) Sorghum: origin, history, technology and production. Wiley and Sons Inc, New York, pp 191–223

    Google Scholar 

  • Murphy RL, Klein RR, Morishige DT, Brady JA, Rooney WL, Miller FR, Dugas DV, Klein PE, Mullet JE (2011) Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum. Proc Natl Acad Sci 108:16469–16474

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murphy RL, Morishige DT, Brady JA, Rooney WL, Yang S, Klein PE, Mullet JE (2014) Ghd7 (Ma 6 ) represses sorghum flowering in long days: Ghd7 alleles enhance biomass accumulation and grain production. Plant Genome. doi:10.3835/plantgenome2013.3811.0040

    Google Scholar 

  • Oliver R (1966) The problem of the Bantu expansion. J Afr Hist 7:361–376

    Article  Google Scholar 

  • Olsen KM, Purugganan MD (2002) Molecular evidence on the origin and evolution of glutinous rice. Genetics 162:941–950

    PubMed Central  CAS  PubMed  Google Scholar 

  • Posnansky M (1968) Bantu genesis: archaeological reflections. J Afr His 9:1–11

    Article  Google Scholar 

  • Quinby JR (1967) The Maturity Genes of Sorghum. In: Norman AG (ed) Adv Agron. Academic Press, New York, pp 267–305

    Google Scholar 

  • Quinby JR (1974) Sorghum improvement and the genetics of growth. Texas A&M University Press, College Station

    Google Scholar 

  • Rooney WL, Blumenthal J, Bean B, Mullet JE (2007) Designing sorghum as a dedicated bioenergy feedstock. Biofuels Bioprod Bior 1:147–157

    Article  CAS  Google Scholar 

  • Rosenow DT, Dahlberg JA (2001) Collection, conversion, and utilization of sorghum. In: Smith CW, Frederiksen RA (eds) Sorghum: origin, history, technology and production. Wiley and Sons Inc, New York, pp 309–328

    Google Scholar 

  • Russell T, Silva F, Steele J (2014) Modelling the spread of farming in the Bantu-speaking regions of Africa: an archaeology-based phylogeography. PLoS One 9:e87854

    Article  PubMed Central  PubMed  Google Scholar 

  • Shrestha R, Gómez-Ariza J, Brambilla V, Fornara F (2014) Molecular control of seasonal flowering in rice, arabidopsis and temperate cereals. Ann Bot. doi:10.1093/aob/mcu032

    PubMed  Google Scholar 

  • Smith SD, Rausher MD (2011) Gene loss and parallel evolution contribute to species difference in flower color. Mol Biol Evol 28:2799–2810

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith SD, Wang S, Rausher MD (2012) Functional Evolution of an anthocyanin pathway enzyme during a flower color transition. Mol Biol Evol 30:602–612

    Article  PubMed Central  PubMed  Google Scholar 

  • Stephens JC, Miller FR, Rosenow DT (1967) Conversion of alien sorghums to early combine genotypes. Crop Sci 7:396

    Article  Google Scholar 

  • Thurber C, Ma J, Higgins R, Brown P (2013) Retrospective genomic analysis of sorghum adaptation to temperate-zone grain production. Genome Biol 14:R16

    Article  Google Scholar 

  • Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034

    Article  CAS  PubMed  Google Scholar 

  • Vinall HN, Getty RE (1921) Sudan grass and related plants. US Department of Agriculture, Washington, DC

    Book  Google Scholar 

  • Vinall HN, Stephens JC, Martin JH (1936) Identification, history, and distribution of common sorghum varieties. United States Department of Agriculture, Washington, DC

    Google Scholar 

  • Wendorf F, Close AE, Schild R, Wasylikowa K, Housley RA, Harlan JR, Krolik H (1992) Saharan exploitation of plants 8000 years BP. Nature 359:721–724

    Article  Google Scholar 

  • Wu W, Zheng X-M, Lu G, Zhong Z, Gao H, Chen L, Wu C, Wang H-J, Wang Q, Zhou K, Wang J-L, Wu F, Zhang X, Guo X, Cheng Z, Lei C, Lin Q, Jiang L, Wang H, Ge S, Wan J (2013) Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia. Proc Natl Acad Sci 110:2775–2780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the members of the United States Department of Agriculture—Agriculture Research Service’s Plant Genetic Resources Conservation Unit, Griffin, GA (USA), for helpful consultation and for provision of seed samples of historical sorghum cultivars, African landraces, and wild and weedy accessions. We thank J. McCollum for expert technical assistance, the entire staff of MMR Genetics LLC for expert field assistance, and Stephanie Sullivan for her graphical design services. Funding was provided by the United States Department of Agriculture—Agriculture Research Service (to R.R.K.), and by MMR Genetics LLC (to F.R.M.).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia E. Klein.

Additional information

Communicated by H.-C. Jing.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, R.R., Miller, F.R., Dugas, D.V. et al. Allelic variants in the PRR37 gene and the human-mediated dispersal and diversification of sorghum. Theor Appl Genet 128, 1669–1683 (2015). https://doi.org/10.1007/s00122-015-2523-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2523-z

Keywords

Navigation