Skip to main content
Log in

Linkage disequilibrium and association analysis of stripe rust resistance in wild emmer wheat (Triticum turgidum ssp. dicoccoides) population in Israel

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key Message

Rapid LD decay in wild emmer population from Israel allows high-resolution association mapping. Known and putative new stripe rust resistance genes were found.

Abstract

Genome-wide association mapping (GWAM) is becoming an important tool for the discovery and mapping of loci underlying trait variation in crops, but in the wild relatives of crops the use of GWAM has been limited. Critical factors for the use of GWAM are the levels of linkage disequilibrium (LD) and genetic diversity in mapped populations, particularly in those of self-pollinating species. Here, we report LD estimation in a population of 128 accessions of self-pollinating wild emmer, Triticum turgidum ssp. dicoccoides, the progenitor of cultivated wheat, collected in Israel. LD decayed fast along wild emmer chromosomes and reached the background level within 1 cM. We employed GWAM for the discovery and mapping of genes for resistance to three isolates of Puccinia striiformis, the causative agent of wheat stripe rust. The wild emmer population was genotyped with the wheat iSelect assay including 8643 gene-associated SNP markers (wheat 9K Infinium) of which 2,278 were polymorphic. The significance of association between stripe rust resistance and each of the polymorphic SNP was tested using mixed linear model implemented in EMMA software. The model produced satisfactory results and uncovered four significant associations on chromosome arms 1BS, 1BL and 3AL. The locus on 1BS was located in a region known to contain stripe rust resistance genes. These results show that GWAM is an effective strategy for gene discovery and mapping in wild emmer that will accelerate the utilization of this genetic resource in wheat breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 57:289–300

    Google Scholar 

  • Blumler MA (1997). Introgression of durum into wild emmer and the agricultural origin question. In: Damania AB, Valkoun J, Willcox G, Qualset CO (eds) The origins of agriculture and crop domestication. ICARDA, IPGRI, FAO and UC/GRCP, pp 252–268

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2008) TASSEL: software for association mapping of complex trait in diverse samples. Bioinformatics 23:2633–2635

    Article  Google Scholar 

  • Brenchley R, Spannagl M, Pfeifer M, Barker GLA, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–710

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Buckler ES, Thornsberry JM (2002) Plant molecular diversity and applications to genomics. Curr Opin Plant Biol 5:107–111

    Article  PubMed  CAS  Google Scholar 

  • Caldwell KS, Russell J, Langridge P, Powell W (2006) Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genetics 172:557–567

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S et al (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Nat Acad Sci 110:8057–8062

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chao S, Zhang W, Dubcovsky J, Sorrells M (2007) Evaluation of genetic diversity and genome-wide linkage disequilibrium among U.S. wheat (Triticum aestivum L.) germplasm representing different market classes. Crop Sci 47:1018–1030

  • Chao S, Dubcovsky J, Dvorak J, Luo MC, Baenziger SP, Matnyazov R, Clark DR, Talbert LE, Anderson JA, Dreisigacker S (2010) Population-and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genomics 11:727

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chen X, Penman L, Wan A, Cheng P (2010) Virulence races of Puccinia striiformis f. sp. tritici in 2006 and 2007 and development of wheat stripe rust and distributions, dynamics, and evolutionary relationships of races from 2000 to 2007 in the United States. Can J Plant Pathol 32:315–333

    Article  Google Scholar 

  • Cheng J, Yan J, Sela H, Manisterski J, Lewinsohn D, Nevo E, Fahima T (2010) Pathogen race determines the type of resistance response in the stripe rust-Triticum dicoccoides pathosystem. Physiol Plant 139:269–279

    PubMed  CAS  Google Scholar 

  • Crossa J, Burgueño J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dvorak J, Akhunov ED, Akhunov AR, Deal KR, Luo MC (2006) Molecular characterization of a diagnostic DNA marker for domesticated tetraploid wheat provides evidence for gene flow from wild tetraploid wheat to hexaploid wheat. Mol Biol Evol 23:1386–1396

    Article  PubMed  CAS  Google Scholar 

  • Dvorak J, Deal KR, Luo MC, You FM, von Borstel K, Dehghani H (2012) The origin of spelt and free-threshing hexaploid wheat. J Hered 103(3):426–441

    Article  PubMed  CAS  Google Scholar 

  • Ersoz ES, Yu J, Buckler ES (2007) Applications of linkage disequilibrium and association mapping in crop plants. In: Genomics-assisted crop improvement. Springer, Dordrecht, The Netherlands, pp 97–120

  • Feldman M, Kislev ME (2007) Domestication of emmer wheat and evolution of free-threshing tetraploid wheat. Isr J Plant Sci 55:207–221

    Article  Google Scholar 

  • Feuillet C, Stein N, Rossini L, Praud S, Mayer K, Schulman A, Eversole K, Appels R (2012) Integrating cereal genomics to support innovation in the triticeae. Funct Integr Genomics 12:573–583

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

  • Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360

    Article  PubMed  CAS  Google Scholar 

  • Gerechter-Amitai ZK, Sharp EL, Reinhold M (1984) Temperature-sensitive genes for resistance to Puccinia Striiformis in Triticum dicoccoides. Euphytica 33:665–672

    Article  Google Scholar 

  • Gerechter-Amitai Z, Silfhout CH, Grama A, Kleitman F (1989) Yr15—a new gene for resistance to Puccinia Striiformis in Triticum dicoccoides sel. Euphytica 43:187–190

    Article  Google Scholar 

  • Golenberg E (1988) Outcrossing rates and their relationship to phenology in Triticum dicoccoides. Theor Appl Genet 75:937–944

    Google Scholar 

  • Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19

    Google Scholar 

  • Grama A, Gerechter-Amitai ZK, Silfhout CH (1984) Additive gene action for resistance to Puccinia Striiformis f. sp. tritici in Triticum dicoccoides. Euphytica 33:281–287

    Article  Google Scholar 

  • Haudry A, Cenci A, Ravel C, Bataillon T, Brunel D, Poncet C, Hochu I, Poirier S, Santoni S, Glemin S (2007) Grinding up wheat: a massive loss of nucleotide diversity since domestication. Mol Biol Evol 24:1506–1517

    Article  PubMed  CAS  Google Scholar 

  • Horvath A, Didier A, Koenig J, Exbrayat F, Charmet G, Balfourier F (2009) Analysis of diversity and linkage disequilibrium along chromosome 3B of bread wheat (Triticum aestivum L.). Theor Appl Genet 119:1523–1537

  • Hovmoeller MS, Yahyaoui AH, Milus EA, Justesen AF (2008) Rapid global spread of two aggressive strains of a wheat rust fungus. Mol Ecol 17:3818–3826

    Article  Google Scholar 

  • Hyten DL, Choi I, Song Q, Shoemaker RC, Nelson RL, Costa JM, Specht JE, Cregan PB (2007) Highly variable patterns of linkage disequilibrium in multiple soybean populations. Genetics 175:1937–1944

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Johnson R, Stubbs RW, Fuchs E, Chamberlain NH (1972) Nomenclature for physiologic races of Puccinia Striiformis infecting wheat. Trans Br Mycol Soc 58:475–480

    Article  Google Scholar 

  • Jorgensen C, Distelfeld A, Luo M, Korol A, Dvorak J (2012) Genetic dissection of the domestication syndrome in tetraploid wheat. Plant and animal genome XX, San Diego, CA, USA

  • Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim S, Plagnol V, Hu TT, Toomajian C, Clark RM, Ossowski S, Ecker JR, Weigel D, Nordborg M (2007) Recombination and linkage disequilibrium in Arabidopsis thaliana. Nat Genet 39:1151–1155

    Article  PubMed  CAS  Google Scholar 

  • Luo MC, Yang ZL, You FM, Kawahara T, Waines JG, Dvorak J (2007) The structure of wild and domesticated emmer wheat populations, gene flow between them, and the site of emmer domestication. Theor Appl Genet 114:947–959

    Article  PubMed  Google Scholar 

  • Maccaferri M, Sanguineti MC, Noli E, Tuberosa R (2005) Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Mol Breed 15:271–290

    Article  CAS  Google Scholar 

  • Marais GF, Pretorius ZA, Wellings CR, McCallum B, Marais AS (2005) Leaf rust and stripe rust resistance genes transferred to common wheat from Triticum dicoccoides. Euphytica 143:115–123

    Article  CAS  Google Scholar 

  • McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Appels R and Xia XC (2013) Catalogue of gene symbols for wheat. In: 12th International Wheat Genetics Symposium, Yokohama

  • Milus EA, Kristensen K, Hovmøller MS (2009) Evidence for increased aggressiveness in a recent widespread strain of Puccinia Striiformis f. sp. tritici causing stripe rust of wheat. Phytopathology 99:89–94

    Article  PubMed  Google Scholar 

  • Morrell PL, Toleno DM, Lundy KE, Clegg MT (2005) Low levels of linkage disequilibrium in wild barley (Hordeum vulgare ssp. spontaneum) despite high rates of self-fertilization. Proc Nat Acad Sci 102:2442–2447

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nazari K, Hodson D, and Hovmoller K (2011) Yellow rust in CWANA 2010–2011, BGRI technical workshop, Minnisota

  • Nevo E, Korol AB, Beiles A, Fahima T (2002) Evolution of wild emmer and wheat improvement: population genetics, genetic resources, and genome organization of wheat’s progenitor, Triticum dicoccoides. Springer, Berlin

    Book  Google Scholar 

  • Nordborg M, Borevitz JO, Bergelson J, Berry CC, Chory J, Hagenblad J et al (2002) The extent of linkage disequilibrium in Arabidopsis thaliana. Nat Genet 30:190–193

    Article  PubMed  CAS  Google Scholar 

  • Ozkan H, Brandolini A, Pozzi C, Effgen S, Wunder J, Salamini F (2005) A reconsideration of the domestication geography of tetraploid wheats. Theor Appl Genet 110:1052–1060

    Article  PubMed  CAS  Google Scholar 

  • Özkan H, Willcox G, Graner A, Salamini F, Kilian B (2011) Geographic distribution and domestication of wild emmer wheat (Triticum dicoccoides) Genet Resour Crop Evol 58:11–53

  • Peng JH, Fahima T, Roder MS, Li YC, Dahan A, Grama A, Ronin YI, Korol AB, Nevo E (1999) Microsatellite tagging of the stripe-rust resistance gene YrH52 derived from wild emmer wheat, Triticum dicoccoides, and suggestive negative crossover interference on chromosome 1B. Theor Appl Genet 98:862–872

    Article  CAS  Google Scholar 

  • Peng J, Korol AB, Fahima T, Röder MS, Ronin YI, Li YC, Nevo E (2000) Molecular genetic maps in wild emmer wheat, triticum dicoccoides: genome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Res 10:1509–1531

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Poyarkova H (1988) Morphology, geography and infraspecific taxonomics of Triticum dicoccoides Körn. A retrospective of 80 years of research. Euphytica 38:11–23

    Article  Google Scholar 

  • Poyarkova H, Gerechter-Amitai Z, Genizi A (1991) Two variants of wild emmer (Triticum dicoccoides) native to Israel: morphology and distribution. Can J B 69:2772–2789

    Article  Google Scholar 

  • Qayoum A, Line RF (1985) High-temperature, adult-plant resistance to stripe rust of wheat. Phytopathology 75:1121–1125

    Article  Google Scholar 

  • Rafalski JA (2010) Association genetics in crop improvement. Curr Opin Plant Biol 13:174–180

    Article  PubMed  CAS  Google Scholar 

  • Rostoks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML, Svensson JT, Stein N, Varshney RK, Marshall DF, Graner A, Close TJ, Waugh R (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci 103:18656–18661

  • Saintenac C, Jiang D, Wang S., Akhunov E (2013) Sequence-based mapping of the polyploid wheat genome. G3: Genes| Genomes| Genetics

  • Sajjad M, Khan SH, Kazi AM (2012) The low down on association mapping in hexaploid wheat (Triticum aestivum L.). J Crop Sci Biotechnol 15:147–158

    Article  Google Scholar 

  • Salamini F, Ozkan H, Brandolini A, Schafer-Pregl R, Martin W (2002) Genetics and geography of wild cereal domestication in the near east. Nat Rev Genet 3:429–441

    PubMed  CAS  Google Scholar 

  • Somers DJ, Banks T, DePauw R, Fox S, Clarke J, Pozniak C, McCartney C (2007) Genome-wide linkage disequilibrium analysis in bread wheat and durum wheat. Genome 50:557–567

  • R Core Team (2011) R: a language and environment for statistical computing. http://www.R-project.org/

  • Wang M, Jiang N, Jia T, Leach L, Cockram J, Waugh R, Ramsay L, Thomas B, Luo Z (2011) Genome-wide association mapping of agronomic and morphologic trait in highly structured populations of barley cultivars. Theor Appl Genet 124:233–246

    Article  PubMed  Google Scholar 

  • Warnes G, Gorjanc G, Leisch F, Man M (2011) Genetics: Population Genetics (http://CRAN.R-project.org/package=genetics)

  • Waugh R, Jannink JL, Muehlbauer GJ, Ramsay L (2009) The emergence of whole genome association scans in barley. Curr Opin Plant Biol 12:218–222

  • Wellings CR (2011) Global status of stripe rust: a review of historical and current threats. Euphytica 179:1–13

    Article  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Buckler ES, Casstevens TM, Bradbury PJ (2009) Software engineering the mixed model for genome-wide association studies on large samples. Brief Bioinform 10:664–675

    Article  PubMed  Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of plants in the old world: the origin and spread of cultivated plants in west Asia, Europe, and the Nile Valley. Oxford University Press, USA

    Google Scholar 

Download references

Acknowledgments

This work was supported by grant No IS-4137-08 from the US-Israel BARD foundation, grants 2009-65300-05638 and 2011-68002-30029 (Triticeae-CAP) from the USDA National Institute of Food and Agriculture.

Conflict of interest

The authors declare no conflict of interest.

Ethical standards

The authors declare that ethical standards are met, and all the experiments comply with the current laws of the country in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanan Sela.

Additional information

Communicated by Heiko C. Becker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 2879 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sela, H., Ezrati, S., Ben-Yehuda, P. et al. Linkage disequilibrium and association analysis of stripe rust resistance in wild emmer wheat (Triticum turgidum ssp. dicoccoides) population in Israel. Theor Appl Genet 127, 2453–2463 (2014). https://doi.org/10.1007/s00122-014-2389-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-014-2389-5

Keywords

Navigation