Skip to main content
Log in

The low down on association mapping in hexaploid wheat (Triticum aestivum L.)

  • Review Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

The past few decades have witnessed hundreds of family-based linkage studies mapping for numerous traits but only a limited number of QTLs were actually cloned, tagged, or used for marker-assisted selection. Although providing valuable information, this conventional approach cannot be scaled up to underpin the incredible amount of phenotypic variation in the form of 266, 589 hexaploid wheat accessions maintained in public germplasm collections. Association mapping has recently emerged as an alternative and more powerful mapping approach where a natural population is surveyed to determine marker-trait associations using linkage disequilibrium (LD). After its first application for milling quality in 2006, association mapping studies in hexaploid wheat are being extended to tag yield traits, protein quality, and tolerance to biotic and abiotic stresses. Advances in genotyping technology and statistical approaches greatly accelerated the shift from conventional linkage-based mapping to LD-based association mapping. Association mapping stands out because of simultaneous utilization of a large number of ex situ-conserved natural variation due to historical recombination events accumulated over centuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdurakhmonov AY, Abdukarimov A. 2008. Application of association mapping to understanding the genetic diversity of plant germplasm resources. Int. J. Plant Genomics 574927: 1–18

    Google Scholar 

  • Adhikari T, Jackson EW, Gurung S, Hansen J, Bonman JM. 2011. Association mapping of quantitative resistance to phaeosphaeria nodorum in spring wheat landraces from the USDA national small grains collection. Phytopathology 101: 1301–1310

    PubMed  Google Scholar 

  • Ali ML, Baenziger PS, Ajlouni ZA, Capbell BT, Gill KS, Eskridge KM, Mujeeb-Kazi A, Dweikat I. 2011. Mapping QTL for agronomic traits on wheat chromosome 3A and a comparision of recombinant inbred chromosome line populations. Crop Sci. 51: 553–566

    Google Scholar 

  • Al-Maskri AH, Sajjad M, Khan SH. 2012. Association mapping: a step forward to discovering new alleles for crop improvement. Int. J. Agric. Biol. 14: 153–160

    Google Scholar 

  • Araki E, Miura H, Sawada S. 1999. Identification of genetic loci affecting amylose content and agronomic traits on chromosome 4A of wheat. Theor. Appl. Genet. 98: 977–984

    CAS  Google Scholar 

  • Aruamuganathan K, Earle ED. 1991. Estimation of nuclear DNA content of plants by flow cytometry. Plant Mol. Biol. Rep. 9: 229–233

    Google Scholar 

  • Asins M. 2002. Present and future of quantitative trait locus analysis in plant breeding. Plant Breed. 121: 281–291

    Google Scholar 

  • Balfourier F, Roussel V, Strelchenko, Exbrayat-Vinson F, Sourdille P, Boutet G, Koenig J, Ravel C, Mitrofanova O, Beckert M, Charmet G. 2007. A worldwide bread wheat core collection arrayed in a 384-well plate. Theor. Appl. Genet. 114: 1265–1275

    PubMed  Google Scholar 

  • Blanco A, Bellomo MP, Lotti C, Maniglio T, Pasqualone A, Simeone R, Troccoli A, Di Fonzo N 1998. Genetic mapping of sedimentation volume across environments using recombinant inbred lines of durum wheat. Plant Breed. 117: 413–417

    Google Scholar 

  • Blanco A, De Giovanni C, Laddomada B, Sciancalepore A, Simeone R, Devos KM, Gale MD. 1996. Quantitative trait loci influencing grain protein content in tetraploid wheats. Plant Breed. 115: 310–316

    Google Scholar 

  • Borner A, Schumann E, Furste A, Coster H, Leithold B, Roder S, Weber E. 2002. Mappingof quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor. Appl. Genet. 105: 921–936

    PubMed  Google Scholar 

  • Braun L, Ohayon H, Cossart P. 1998. The InlB protein of Listeria monocytogenesis sufficient to promote entry mammalian cells. Mol. Microbiol. 27: 1077–1087

    PubMed  CAS  Google Scholar 

  • Breseghello F, Finney PL, Gaines C, Andrews L, Tanaka J, Penner G, Sorrells ME. 2005. Genetic loci related to kernel quality differences between a soft and a hard wheat cultivar. Crop Sci. 45: 1685–1695

    CAS  Google Scholar 

  • Breseghello F, Sorrells ME. 2006. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172: 1165–1177

    PubMed  Google Scholar 

  • Buckler ES IV, Thornsberry JM. 2002. Plant molecular diversity and applications to genomics. Curr. Opin. Plant Biol. 5: 107–111

    PubMed  CAS  Google Scholar 

  • Cadalen T, Sourdille P, Charmet G, Tixier M, Gay G, Boeuf C, Bernard S, Leroy P, Bernard M. 1998. Molecular markers linked to genes affecting plant height in wheat using a doubled-haploid population. Theor. Appl. Genet. 96: 933–940

    CAS  Google Scholar 

  • Cardon LR, Palmer LJ. 2003. Population stratification and spurious allelic association. Lancet 361: 598–604

    PubMed  Google Scholar 

  • Chantret N, Mingeot D, Sourdille P, Bernard M, Jacquemin JM, Doussinault G. 2001. A major QTL for powdery mildew resistance is stable over time and at two developmental stages in winter wheat. Theor. Appl. Genet. 103: 448–457

    Google Scholar 

  • Chao S, Dubcovsky J, Dvorak J, Luo MC, Baenziger SP et al. 2010. Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genomics 11: 727

    PubMed  CAS  Google Scholar 

  • Chao S, Zhang W, Dubcovsky J, Sorrells M. 2007. Evaluation of genetic diversity and genome-wide linkage disequilibrium Association mappingong U.S wheat (Triticum aestivum L.) germplasm representing different market classes. Crop Sci. 47: 1018–1030

    CAS  Google Scholar 

  • Chen X, Luo MYH, Xia XC, Xia IQ, Chen X, Ren ZL, He ZH, Jia JZ. 2005. Chromosomal location of powdery mildew resistance gene pm16 in wheat using ssr marker analysis. Plant Breed. 124: 225–228

    CAS  Google Scholar 

  • Ching A, Caldwell KS, Jung M, Dolan M, Smith OS, Tingey S, Morgante M, Rafalski AJ. 2002. SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet. 3:19

    PubMed  Google Scholar 

  • Couviour FL, Faure S, Poupard B, Flodrops Y, Dubreuil P, Praud S. 2011. Analysis of genetic structure in a panel of elite wheat varieties and relevance for association mapping. Theor. Appl. Genet. DOI 10.1007/s00122-011-1621-9

  • Crossa J, Burgueno J, Dreisickacker S, Vargas M, Herrera-Foessel SA et al. 2007. Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177: 1889–1913

    PubMed  CAS  Google Scholar 

  • Debaeke P. 2004. Scenario analysis for cereal management in water limited conditions by the means of a crop simulation model (STICS). Agronomie 24: 315–326

    Google Scholar 

  • DeWan A, Liu M, Hartman S, Zhang SS, Liu DTL et al. 2006. HTRA1 promoter polymorphism in wet age-related macular degeneration. Sci. 314: 989–992

    CAS  Google Scholar 

  • Dilbirligi M, Erayman M, Capbell BT, Randhawa HS, Baenziger PS, Dweikat I, Gill KS. 2006. High density mapping and comparative analysis of agronomically important traits on wheat chromosome 3A. Genomics 88: 74–87

    PubMed  CAS  Google Scholar 

  • Ellis M, Spielmeyer W, Gale K, Rebetzke G, Richards R. 2002. “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor. Appl. Genet. 105: 1038–1042

    PubMed  CAS  Google Scholar 

  • FAO. 2010. Food and Agriculture Organization. Available at http://www.fao.org/news/story/en/item/44570/icode/

  • Faris JD, Li WL, Liu DJ, Chen PD, Gill BS. 1999. Candidate gene analysis of quantitative disease resistance in wheat. Theor. Appl. Genet. 98: 219–225

    CAS  Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES IV. 2003. Structure of linkage disequilibrium in plants. Annu. Rev. Plant Biol. 54: 357–374

    PubMed  CAS  Google Scholar 

  • Flint-Garcia SA, Thuillet AC, Yu J, Pressoir G, Romero SM, Mitchell SE, Doebley J, Kresovich S, Goodman MM, Buckler ES. 2005. Maize association population: A high-resolution platform for quantitative trait locus dissection. Plant J. 44: 1054–1064

    PubMed  CAS  Google Scholar 

  • Friesen TL, Faris JD. 2004. Molecular mapping of resistance to Pyrenophora tritici-repentis race 5 and sensitivity to PtrToxB in wheat. Theor. Appl. Genet 109: 464–471

    PubMed  CAS  Google Scholar 

  • Galande AA, Tiwari R, Ammiraju JSS, Santra DK, Laga MD, Rao VS, Gupta VS, Misra BK, Nagarajan S, Ranjekar PK. 2001. Genetic analysis of kernel hardness in bread wheat using PCR-based markers. Theor. Appl. Genet. 103: 601–606

    CAS  Google Scholar 

  • Gate P, Blondlot A, Gouache D, Deudon O, Vignier L. 2008. Impacts of climate change on wheat growth in France. What solutions and actions to undertake? Oléagineux Corps gras Lipides 15: 332–336

    Google Scholar 

  • Gaut BS, Long AD. 2003. The lowdown on linkage disequilibrium. Plant Cell 15: 1502–1506

    PubMed  CAS  Google Scholar 

  • Gervais L, Dedryver F, Morlais JY, Bodusseau V, Negre S, Bilous M, Groos C, Trottet M. 2003. Mapping of quantitative trait loci for field resistance to Fusarium head blight in an European winter wheat. Theor. Appl. Genet. 106: 961–970

    PubMed  CAS  Google Scholar 

  • Gordon D, Finch SJ. 2005. Factors affecting statistical power in the detection of genetic association. J. Clinical Invest. 115: 1408–1418

    CAS  Google Scholar 

  • Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES et al. 2009. A first-generation haplotype map of maize. Sci. 326: 1115–1117

    CAS  Google Scholar 

  • Gouis JL, Bordes J, Ravel C, Heumez E, Faure S et al. 2012. Genome-wide association analysis to identify chromosomal regions determining components of earliness in wheat. Theor. Appl. Genet. 124: 597–611

    PubMed  Google Scholar 

  • Groos C, Bervas E, Charmet G. 2004. Genetic analysis of grain protein content, grain hardness and dough rheology in a hard 9 hard bread wheat progeny. J. Cereal Sci. 40: 93–100

    CAS  Google Scholar 

  • Groos C, Robert N, Bervas E, Charmet G. 2003. Genetic analysis of grain-protein content, GY, and thousand-kernel weight in bread wheat. Theor. Appl. Genet. 106: 1032–1040

    PubMed  CAS  Google Scholar 

  • Guillaumie S, Charmet G, Linossier L, Torney V, Robert N, Ravel C. 2004. Co-location between a gene encoding for the bZip factor SPA and an eQTL for a high-molecular-weight glutenin subunit in wheat (Triticum aestivum). Genome 47: 750–713

    Google Scholar 

  • Gupta PK, Mir RR, Mohan A, Kumar J. 2008. Wheat genomics: Present status and future prospects. Int. J. Plant Genomics 2008: 896451

    PubMed  CAS  Google Scholar 

  • Gupta PK, Rustgi S, Kulwal PL. 2005. Linkage disequilibrium and association studies in higher plants: Present status and future prospects. Plant Mol. Biol. 57: 461–485

    PubMed  CAS  Google Scholar 

  • Gurung S, Mamidi S, Bonman JM, Jackson EW, del Rıo LE, Acevedo M, Mergoum M, Adhikari TB. 2011. Identification of novel genomic regions associated with resistance to Pyrenophora tritici-repentis races 1 and 5 in spring wheat landraces using association analysis. Theor. Appl. Genet. DOI 10.1007/s00122-011-1645-1

  • Hai L, Wagner C, Friedt W. 2007. Quantitative structure analysis of genetic diversity Association mappingong spring bread wheats (Triticum aestivum L.) from different geographical regions. Genetica 130: 213–225

    PubMed  CAS  Google Scholar 

  • Hanocq E, Niarquin M, Heumez E, Rousset M, Gouis J. 2004. Detection and mapping of QTL for earliness components in a bread wheat recombinant inbred lines population. Theor. Appl. Genet. 110: 106–115

    PubMed  CAS  Google Scholar 

  • Hiebert C, Thomas J, Mccallum B. 2005. Locating the broadspectrum wheat leaf rust resistance gene lr52 (lrw) to chromosome 5b by a new cytogenetic method. Theor. Appl. Genet. 110: 1453–1457

    PubMed  CAS  Google Scholar 

  • Huang XQ, Cloutier S, Lycar L, Radovanovic N, Humphreys DG, Noll JS, Somers DJ, Brown PD. 2006. Molecular detection of QTLs for agronomic and quality traits in a double haploid population derived from two Canadian wheats (Triticum aestivium L.). Theor. Appl. Genet. 113: 753–766

    PubMed  CAS  Google Scholar 

  • Huang XQ, Cöster H, Ganal MW, Röder MS. 2003. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor. Appl. Genet. 106: 1379–1389

    PubMed  CAS  Google Scholar 

  • Jung C, Müller AE. 2009. Flowering time control and applications in plant breeding. Trends Plant Sci. 14: 1360–1385

    Google Scholar 

  • Karlsson EK, Baranowska I, Wade CM, Hillbertz NHCS, Zody MC et al. 2007. Efficient mapping of Mendelian traits in dogs through genome-wide association. Nat. Genet. 39: 1321–1328

    PubMed  CAS  Google Scholar 

  • Kearsey MJ, Farquhar AGL. 1998. QTL analysis in plants; where are we now? Heredity 80: 137–142

    PubMed  Google Scholar 

  • Keller M, Keller B, Schachermayr G, Winzeler M, Schmid JE, Stamp P, Messmer MM. 1999. Quantitative trait loci for resistance against powdery mildew in a segregating wheat x spelt population. Theor. Appl. Genet. 98: 903–912

    CAS  Google Scholar 

  • Kim S, Plagnol V, Hu TT, Toomajian C, Clark RM, Ossowski S, Ecker JR, Weigel D, Nordborg M. 2007. Recombination and linkage disequilibrium in Arabidopsis thaliana. Nat. Genet. 39: 1151–1155

    PubMed  CAS  Google Scholar 

  • Kirigwi FM, Ginkel MV, Brown-Gedira G, Gill BS, Paulsen GM, Fritz AK. 2007. Markers associated with a QTL for grain yield in wheat under drought. Mol. Breed. 20: 401–413

    CAS  Google Scholar 

  • Kuchel H, Williams KJ, Langridge P, Eagles HA, Jefferies SP. 2007. Genetic dissection of grain yield in bread wheat. I. QTL analysis. Theor. Appl. Genet. 115: 1029–1041

    CAS  Google Scholar 

  • Kumar N, Kulwal PL, Balyan HS, Gupta PK. 2007. QTL mapping for yield and yield contribution traits in two mapping populations of bread wheat. Mol. Breed. 19: 163–177

    Google Scholar 

  • Kunert A, Naz AA, Dedeck O, Pillen K, Leon J. 2007. AB-QTL analysis in winter wheat: I. Synthetic hexaploid wheat (T. turgidum ssp. dicoccoides x T. tauschii) as a source of favorable alleles for milling and baking quality traits. Theor. Appl. Genet. 115: 683–695

    PubMed  CAS  Google Scholar 

  • Li S, Jia J, Wei X, Zhang X, Li L et al. 2007. A intervarietal genetic map and QTL analysis for yield traits in wheat. Mol. Breed. 20: 167–168

    Google Scholar 

  • Li Y, Song Y, Zhou R, Branlard G, Jia J. 2009. Detection of QTLs for bread-making quality in wheat using a recombinant inbred line population. Plant Breed. 128: 235–243

    Google Scholar 

  • Liu L, Wang L, Yao J, Zheng Y, Zhao C. 2010. Association mapping of six agronomic traits on chromosome 4A of wheat (Triticum aestivum L.). Mol. Plant Breed. 1: 1–10

    CAS  Google Scholar 

  • Ma W, Appels R, Bekes F, Larroque O, Morell MK, Gale KR. 2005. Genetic characterization of dough rheological properties in a wheat doubled haploid population: Additive genetic effects and epistatic interactions. Theor. Appl. Genet. 111: 410–422

    PubMed  CAS  Google Scholar 

  • Mackay I, Powell W. 2007. Methods for linkage disequilibrium mapping in crops. Trends Plant Sci. 12: 57–63

    PubMed  CAS  Google Scholar 

  • Mann G, Diffey S, Cullis B, Azanza F, Martin D et al. 2009. Genetic control of wheat quality: Interactions between chromosomal regions determining protein content and composition, dough rheology, and sponge and dough baking properties. Theor. Appl. Genet. 118: 1519–1537

    PubMed  Google Scholar 

  • Marza F, Bai GH, Carver BF, Zhou WC. 2006. Quantitative trait loci for yield and related traits in the wheat population. Ning7840 x Clark. Theor. Appl. Genet. 112: 688–698

    PubMed  CAS  Google Scholar 

  • McCartney CA, Somers DJ, Humphreys DG, Lukow O, Ames N, Noll J, Cloutier S, McCallum BD. 2005. Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452x ‘AC Domain’. Genome 48: 870–883

    PubMed  CAS  Google Scholar 

  • Mingeot D, Chantret N, Baret PV, Dekeyser A, Boukhatem N, Sourdille P, Doussinault G. Jacquemin JM. 2002. Mapping QTL involved in adult plant resistance to powdery mildew in the winter wheat line RE714 in two susceptible genetic backgrounds. Plant Breed. 121: 133–140

    CAS  Google Scholar 

  • Morgante M, Salamini F. 2003. From plant genomics to breeding practice. Curr. Opin. Biotech. 14: 214–219

    PubMed  CAS  Google Scholar 

  • Navabi A, Tewari JP, Singh RP, McCallum B, Laroche A, Briggs KG. 2005. Inheritance and QTL analysis of durable resistance to stripe and leaf rusts in an Australian cultivar, Triticum aestivum ‘Cook’. Genome 48: 97–107

    PubMed  CAS  Google Scholar 

  • Nelson JC, Singh RP, Autrique JE, Sorrells ME. 1997. Mapping genes conferring and suppressing leaf rust resistance in wheat. Crop Sci. 37: 1928–1935

    CAS  Google Scholar 

  • Neumann K, Kobiljski B, Dencic S, Varshney RK, Borner A. 2011. Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol. Breed. DOI 10.1007/s11032-010-9411-7

  • Olmos S, Distelfeld A, Chicaiza O, Schlatter AR, Fahima T, Echenique V, Dulxovsky J. 2003. Precise mapping of a locus affecting grain protein content in durum wheat. Theor. Appl. Genet. 107: 1243–1251

    PubMed  CAS  Google Scholar 

  • Oraguzie NC, Wilcox PL, Rikkerink EHA, de Silva HN. 2007. Linkage disequilibrium. In NC Oraguzie, EHA Rikkerink, SE Gardiner, HN de Silva, Eds, Association Mapping in Plants, Springer, New York, NY, pp 11–39

    Google Scholar 

  • Palaisa KA, Morgante M, Williams M, Rafalski A. 2003. Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell 15: 1795–1806

    PubMed  CAS  Google Scholar 

  • Patil RM, Oak MD, Tamhankar SA, Rao VS. 2009. Molecular mapping of QTLs for gluten strength as measured by sedimentation volume and mixograph in durum wheat (Triticum turgidum L. ssp. durum). J. Cereal Sci. 49: 378–386

    CAS  Google Scholar 

  • Peng JH, Bai Y, Haley SD, Lapitan NLV. 2009. Microsatellitebased molecular diversity of bread wheat germplasm and association mapping of wheat resistance to the Russian wheat aphid. Genetica 135: 95–122

    PubMed  CAS  Google Scholar 

  • Peng JH, Ronin YI, Fahima T, Rüder MS, Li YC, Nevo E, Korol AB. 2003. Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc. Natl. Acad. Sci. USA 100: 2489–2494

    PubMed  CAS  Google Scholar 

  • Pestsova EG, Borner A, Roder MS. 2006. Development and QTL assessment of Triticum aestivum-Aegilops tauschii introgression lines. Theor. Appl. Genet. 112: 634–647

    PubMed  Google Scholar 

  • Plaschke J, Ganal MW, Roder MS. 1995. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor. Appl. Genet. 91: 1001–1007

    CAS  Google Scholar 

  • Prasad M, Kumar N, Kulwal P, Roder M, Balyan H, Dhaliwal H, Gupta P. 2003. QTL analysis for grain protein content using SSR markers and validation studies using NILs in bread wheat. Theor. Appl. Genet. 99: 341–345

    Google Scholar 

  • Prasad M, Varshney RK, Roy JK, Balyan HS, Gupta PK. 2000. The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theor. Appl. Genet. 100: 584–592

    CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959

    PubMed  CAS  Google Scholar 

  • Quarrie S, Pekic Quarrie S, Radosevic R, Rancic D, Kaminska A, Barnes JD, Leverington M, Ceoloni C, Dodig D. 2006. Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. J. Exp. Bot. 57: 2627–2637

    PubMed  CAS  Google Scholar 

  • Rafalski JA. 2002. Novel genetic mapping tools in plants: SNPs and LD-based approaches. Plant Sci. 162: 329–333

    CAS  Google Scholar 

  • Ravel C, Praud S, Murigneux A, Canaguier A, Sapet F et al. 2006a. Single-nucleotide polymorphism frequency in a set of selected lines of bread wheat (Triticum aestivum L.). Genome 49: 1131–1139

    PubMed  CAS  Google Scholar 

  • Ravel C, Praud S, Murigneux A, Linossier L, Dardevet M, Balfourier F, Dufour P, Brunel D, Charmet G. 2006b. Identification of Glu-B1-1 as a candidate gene for the quantity of high-molecular-weight glutenin in bread wheat (Triticum aestivum L.) by means of an association study. Theor. Appl. Genet. 112: 738–743

    PubMed  CAS  Google Scholar 

  • Reif JC, Gowda M, Maurer HP, Longin CFH, Korzun V, Ebmeyer E, Bothe R, Pietsch C, Würschum T. 2011. Association mapping for quality traits in soft winter wheat. Theor. Appl. Genet. 122: 961–970

    PubMed  Google Scholar 

  • Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES IV. 2001. Structure of linkage disequilibrium and phenotypic associations in the maize genome. PNAS 98: 11479–11484

    PubMed  CAS  Google Scholar 

  • Reynolds MP, Borlaug NE. 2006. Impacts of breeding on international collaborative wheat improvement. J. Agric. Sci. 144: 3–17

    Google Scholar 

  • Rostok N, Ramsay L, MacKenzie K, Cardle L, Bhat PR et al. 2006. Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. PNAS 103: 18656–18661

    Google Scholar 

  • Roussel V, Leisova L, Exbrayat F, Stehno Z, Balfourier F. 2005. SSR allelic diversity changes in 480 European bread wheat varieties released from 1840 to 2000. Theor. Appl. Genet. 111: 162–170

    PubMed  CAS  Google Scholar 

  • Roy JK, Bandopadhyay R, Rustgi S, Balyan HS, Gupta PK. 2006. Association analysis of agronomically important traits using SSR, SAMPL, and AFLP markers in bread wheat. Curr. Sci. 90: 683–689

    CAS  Google Scholar 

  • Roy JK, Smith KP, Muehlbauer GJ, Chao S, Close TJ, Steffenson BJ. 2010. Association mapping of spot blotch resistance in wild barley. Mol. Breed. 26: 243–256

    PubMed  Google Scholar 

  • Skøt L, Humphreys J, Humphreys MO, Thorogood D, Gallagher J, Sanderson R, Armstead IP, Thomas ID. 2007. Association of candidate genes with flowering time and water-soluble carbohydrate content in Lolium perenne (L.). Genetics 177: 535–547

    PubMed  Google Scholar 

  • Slatkin M. 1994. An exact test for neutrality based on the Ewens snampling distribution. Genet. Res. 64:71–74

    PubMed  CAS  Google Scholar 

  • Somers DJ, Banks T, DePauw R, Fox S, Clarke J, Pozniak C, McCartney C. 2007. Genome-wide linkage disequilibrium analysis in bread wheat and durum wheat. Genome 50: 557–567

    PubMed  CAS  Google Scholar 

  • Sun X, Marza F, Ma H, Carver BF, Bai G. 2010. Mapping quantitative trait loci for quality factors in an inter-class cross of US and Chinese wheat. Theor. Appl. Genet. 120: 1041–1051

    PubMed  CAS  Google Scholar 

  • Tanksley SD. 1993. Mapping polygenes. Annu. Rev. Genet. 27: 205–233

    PubMed  CAS  Google Scholar 

  • Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES IV. 2001. Dwarf8 polymorphisms associate with variation in flowering time. Nat. Genet. 28: 286–289

    PubMed  CAS  Google Scholar 

  • Tommasini L, Schnurbusch T, Fossati D, Mascher F, Keller B. 2007. Association mapping of Stagonospora nodorum blotch resistance in modern European winter wheat varieties. Theor. Appl. Genet. 115: 697–708

    PubMed  CAS  Google Scholar 

  • Tsilo TJ, Hareland GA, Simsek S, Chao S, Anderson JA 2010. Genome mapping of kernel characteristics in hard red spring wheat breeding lines. Theor. Appl. Genet. 121: 717–730

    PubMed  CAS  Google Scholar 

  • Van Inghelandt D, Melchinger AE, Lebreton C, Stich B. 2010. Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theor. Appl. Genet. 120: 1289–1299

    PubMed  Google Scholar 

  • Verma VA, Foulkes MJ, Worland AJ, Sylvester-Bradley R, Caligari PDS. Snape JW. 2004. Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environments. Euphytica 135: 255–263

    CAS  Google Scholar 

  • Wang Z, Wu X, Ren Q, Chang X, Li R, Jing R. 2010. QTL mapping for developmental behavior of plant height in wheat (Triticum aestivum L.). Euphytica 174: 477–458

    Google Scholar 

  • Wenzl P, Li H, Carling J, Zhou M, Raman H et al. 2006. A highdensity consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics 7: 206

    PubMed  Google Scholar 

  • White J, Law JR, MacKay I, Chalmers KJ, Smith JSC, Kilian A, Powell W. 2007. The genetic diversity of UK, US and Australian cultivars of Triticum aestivum measured by DArT markers and considered by genome. Theor. Appl. Genet. 116: 439–453

    PubMed  Google Scholar 

  • William HM, Hoisington D, Singh RP, Gonzalez-De-Leon D. 1997. Detection of quantitative trait loci associated with leaf rust resistance in bread wheat. Genome 40: 253–260

    PubMed  CAS  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res. 18: 6531–6535

    PubMed  CAS  Google Scholar 

  • Wu X, Wang Z, Chang X, Jing R. 2010. Genetic dissection of the developmental behaviours of plant height in wheat under diverse water regimes. J. Exp. Bot. 61: 2923–2937

    PubMed  CAS  Google Scholar 

  • Xu X, Bai G, Carver BF, Shaner GE, Hunger RM. 2005. Molecular characterization of slow leaf-rusting resistance in wheat. Crop Sci. 45: 758–765

    CAS  Google Scholar 

  • Yang DL, Jing R, Chang XP, Li W. 2007. Identification of quantitative trait loci and environmental interactions for accumulation and remobilization of water-soluble carbohydratesin wheat (Triticum aestivum L.) stems. Genetics 176: 571–584

    PubMed  CAS  Google Scholar 

  • Yao J, Wang L, Liu L, Zhao C, Zheng Y. 2009. Association mapping of agronomic traits on chromosome 2A of wheat. Genetica 137: 67–75

    PubMed  CAS  Google Scholar 

  • Yu J, Buckler ES. 2006. Genetic association mapping and genome organization of maize. Curr. Opin. Biotech. 17: 155–160

    PubMed  CAS  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M et al. 2006. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 38: 203–208

    PubMed  CAS  Google Scholar 

  • Yu LX, Lorenz A, Rutkoski J, Singh RP, Bhavani S, Huerta-Espino J, Sorrells ME. 2011. Association mapping and gene-gene interaction for stem rust resistance in CIMMYT spring wheat germplasm. Theor. Appl. Genet. DOI 10.1007/s00122-011-1664-y

  • Zhang D, Bai G, Zhu C, Yu J, Carver BF. 2010. Genetic diversity, population structure, linkage disequilibrium in U.S. elite winter wheat. Plant Genome 3: 117–127

    CAS  Google Scholar 

  • Zhang J, Hao C, Ren Q, Chang X, Liu G, Jing R. 2011. Association mapping of dynamic developmental plant height in common wheat. Planta 234: 891–902

    PubMed  CAS  Google Scholar 

  • Zhang LY, Marchand S, Tinker NA, Belzile F. 2009. Population structure and linkage disequilibrium in barley assessed by DArT markers. Theor. Appl. Genet. 119:43–52

    PubMed  CAS  Google Scholar 

  • Zhao J, Paulo J, Jamar, D, Lou P, van Eeuwijk, Bonnema G, Vreugdenhil D, Koornneef M. 2007. Association mapping of leaf traits, flowering time, and phytate content in Brassicarapa. Genome 50: 963–973

    PubMed  CAS  Google Scholar 

  • Zhu ZD, Zhou RH, Kong XY, Dong YC, Jia JZ. 2005. Microsatellite markers linked to 2 powdery mildew resistance genes introgressed fromTriticum carthlicum accession PS5 into common wheat. Genome 48: 585–590

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Sajjad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sajjad, M., Khan, S.H. & Kazi, A.M. The low down on association mapping in hexaploid wheat (Triticum aestivum L.). J. Crop Sci. Biotechnol. 15, 147–158 (2012). https://doi.org/10.1007/s12892-012-0021-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-012-0021-2

Key words

Navigation