Skip to main content
Log in

Effect of a rye dwarfing gene on plant height, heading stage, and Fusarium head blight in triticale (×Triticosecale Wittmack)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The rye-derived dwarfing gene Ddw1 on chromosome 5R acts in triticale in considerably reducing plant height, increasing FHB severity and delaying heading stage.

Abstract

Triticale, an amphiploid hybrid between durum wheat and rye, is an European cereal mainly grown in Germany, France, Poland, and Belarus for feeding purposes. Dwarfing genes might further improve the genetic potential of triticale concerning lodging resistance and yield. However, they might have pleiotropic effects on other, agronomically important traits including Fusarium head blight. Therefore, we analyzed a population of 199 doubled haploid (DH) lines of the cross HeTi117-06 × Pigmej for plant height, heading stage, and FHB severity across 2 locations and 2 years. The most prominent QTL was detected on chromosome 5R explaining 48, 77, and 71 % of genotypic variation for FHB severity, plant height, and heading stage, respectively. The frequency of recovery in cross validation was ≥90 % for all three traits. Because the markers that detect dwarfing gene Ddw1 in rye are also in our population the most closely linked markers, we assume that this major QTL resembles Ddw1. For FHB severity two, for plant height three, and for heading stage five additional QTL were detected. Caused by the considerable genetic variation for heading stage and FHB severity within the progeny with the dwarfing allele, short-strawed, early heading and FHB-resistant lines can be developed when population size is large enough.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alheit KV, Reif JC, Maurer HP, Hahn V, Weissmann EA, Miedaner T, Würschum T (2011) Detection of segregation distortion loci in triticale (×Triticosecale Wittmack) based on a high-density DArT marker consensus genetic linkage map. BMC Genomics 12:380. doi:10.1186/1471-2164-12-380

  • Alheit KV, Busemeyer L, Liu W, Maurer HP, Gowda M, Hahn V, Weissmann S, Ruckelshausen A, Reif JC, Würschum T (2014) Multiple-line cross QTL mapping for biomass yield and plant height in triticale (×Triticosecale Wittmack). Theor Appl Genet 127:251–260. doi:10.1007/s00122-013-2214-6

    PubMed  Google Scholar 

  • Anonymus (2001) Growth stages of mono-and dicotyledonous plants BBCH Monograph. Federal Biological Research Centre for Agriculture and Forestry. http://www.bba.de/veroeff/bbch/bbcheng.pdf. Accessed 6 Dec 2013

  • Arseniuk E (1996) Triticale diseases: A review. In: Guedes-Pinto H, Darvey N, Carnide VP (eds) Triticale today and tomorrow. Kluwer Acad: Publ Dordrecht, The Netherlands, pp 499–525

    Chapter  Google Scholar 

  • Arseniuk E, Góral T, Czembor HJ (1993) Reaction of triticale, wheat and rye accessions to gramineous Fusarium spp. infection at the seedling and adult plant growth stages. Euphytica 70:175–183

    Article  Google Scholar 

  • Bai G, Shaner G (1994) Scab of wheat: prospects for control. Plant Dis 78:760–766

    Article  Google Scholar 

  • Baierl A, Bogdan M, Frommlet F, Futschik A (2006) On locating multiple interacting quantitative trait loci in intercross designs. Genetics 173:1693–1703

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Banaszak Z (2010) Breeding of triticale in DANKO. In: 61. Tagung der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs 61:65–68

  • Becher R, Miedaner T, Wirsel SGR (2013) Biology, diversity, and management of FHB-causing Fusarium species in small-grain cereals. In: Kempken F (ed) The mycota XI—agricultural applications, 2nd edn. Springer, Berlin, Heidelberg, pp 199–241

    Chapter  Google Scholar 

  • Börner A, Korzun V, Worland AJ (1998) Comparative genetic mapping of mutant loci affecting plant height and development in cereals. Euphytica 100:245–248

    Article  Google Scholar 

  • Börner A, Korzun V, Voylokov AV, Worland AJ, Weber WE (2000) Genetic mapping of quantitative trait loci in rye (Secale cereale L.). Euphytica 116:203–209

    Article  Google Scholar 

  • BSL (2013) Beschreibende Sortenliste Getreide, Mais, Öl- und Faserpflanzen, Leguminosen, Rüben, Zwischenfrüchte. http://www.bundessortenamt.de/internet30/index.php?id=23&L=0. Accessed 6 Dec 2013

  • Buerstmayr H, Ban T, Anderson JA (2009) QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat a review. Plant Breed 128:1–26

    Article  CAS  Google Scholar 

  • Churchill G, Doerge R (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed Central  PubMed  Google Scholar 

  • DLG (2013) Fungizidempfehlungen für Getreide Ergänzung zu DLG-Mitteilungen 2/2013.http://www.dlg-mitteilungen.de/fileadmin/img/content/start/mehrdazu/1302_volle_spektrum_text.doc. Accessed 6 Dec 2013

  • EFSA (2004) Opinion of the scientific panel on contaminants in the food chain on a request from the commission related to deoxynivalenol (DON) as undesirable substance in animal feed. EFSA J 73:1–41

    Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Prentice Hall, London

    Google Scholar 

  • FAOSTAT (2013) Production Crops. http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor. Accessed 6 Dec 2013

  • Fehr WR (1987) Principles of cultivar development. Theory and technique, vol 1. Macmillan, New York

    Google Scholar 

  • Fisher RA (1921) On the “probable error” of a coefficient of correlation deduced from a small sample. Metron 1:1–32

    Google Scholar 

  • Foulkes MJ, Slafer GA, Davies WJ, Berry PM, Sylvester-Bradley R, Martre P, Calderini DF, Griffiths S, Reynolds MP (2011) Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance. J Exp Bot 62:469–486

    Article  CAS  PubMed  Google Scholar 

  • Gale MD, Youssefian S (1985) Dwarfing genes in wheat. In: Russell GE (ed) Progress in plant breeding, 1st edn. Butterworth, London, pp 1–35

    Chapter  Google Scholar 

  • Gilmour AR, Gogel BJ, Cullis BR, Thompson R (2009) ASReml user guide release 3.0. VSN International Hemel Ltd, Hempstead. http://www.vsni.co.uk. Accessed 6 Dec 2013

  • Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Herry L, Faure S, Laurie D, Bilham L, Snape J (2009) Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theor Appl Genet 119:383–395

    Article  CAS  PubMed  Google Scholar 

  • Hackauf B, Korzun V, Wortmann H, Wilde P, Wehling P (2012) Development of conserved ortholog set markers linked to the restorer gene Rfp1 in rye. Mol Breed 30:1507–1518

    Article  Google Scholar 

  • Haldane JBS (1919) The combination of linkage values, and the calculation of distances between the loci of linked factors. J Genet 8:299–309

    Article  Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    Article  CAS  PubMed  Google Scholar 

  • Holzapfel J, Voss HH, Miedaner T, Korzun V, Haberle J, Schweizer G, Mohler V, Zimmermann G, Hartl L (2008) Inheritance of resistance to Fusarium head blight in three European winter wheat populations. Theor Appl Genet 117:1119–1128

    Article  PubMed  Google Scholar 

  • Kobyljanski VD (1972) On the genetics of the dominant factor of short-strawed rye. Genetika 8:12–17

    Google Scholar 

  • Korzun V, Melz G, Börner A (1996) RFLP mapping of the dwarfing (Ddw1) and hairy peduncle (Hp) genes on chromosome 5 of rye (Secale cereale L.). Theor Appl Genet 92:1073–1077

    Article  CAS  PubMed  Google Scholar 

  • Law CN, Snape JW, Worland AJ (1978) The genetical relationship between height and yield in wheat. Heredity 40:133–151

    Article  Google Scholar 

  • Liu S, Hall MD, Griffey CA, McKendry AL (2009) Meta-analysis of QTL associated with Fusarium head blight resistance in wheat. Crop Sci 49:1955–1968

    Article  CAS  Google Scholar 

  • Löffler M, Schön CC, Miedaner T (2009) Revealing the genetic architecture of FHB resistance in hexaploid wheat (Triticum aestivum L.) by QTL meta-analysis. Mol Breed 23:473–488

    Article  Google Scholar 

  • Lu Q, Szabo-Hever A, Bjornstad A, Lillemo M, Semagn K, Mesterhazy A, Ji F, Shi J, Skinnes H (2011) Two major resistance quantitative trait loci are required to counteract the increased susceptibility to Fusarium head blight of the Rht-D1B dwarfing gene in wheat. Crop Sci 51:2430–2438

    Article  Google Scholar 

  • Ma HX, Bai GH, Zhang X, Lu WZ (2006) Main effects, epistasis, and environmental interactions of quantitative trait loci for Fusarium head blight resistance in a recombinant inbred population. Phytopathology 96:534–541

    Article  CAS  PubMed  Google Scholar 

  • Mao SL, Wei YM, Cao W, Lan XJ, Yu M, Chen ZM, Chen GY, Zheng YL (2010) Confirmation of the relationship between plant height and Fusarium head blight resistance in wheat (Triticum aestivum L.) by QTL meta-analysis. Euphytica 174:343–356

    Article  Google Scholar 

  • Mesterhazy A (1995) Types and components of resistance to Fusarium head blight of wheat. Plant Breed 114:377–386

    Article  Google Scholar 

  • Miedaner T (1997) Breeding wheat and rye for resistance to Fusarium disease. Plant Breed 116:201–220

    Article  Google Scholar 

  • Miedaner T, Geiger HH (1996) Estimates of combining ability for resistance of winter rye to Fusarium culmorum head blight. Euphytica 89:339–344

    Google Scholar 

  • Miedaner T, Voss HH (2008) Effect of dwarfing Rht genes on Fusarium head blight resistance in two sets of near-isogenic lines of wheat and check cultivars. Crop Sci 48:2115–2122

    Article  Google Scholar 

  • Miedaner T, Gang G, Geiger HH (1996) Quantitative-genetic basis of aggressiveness of 42 isolates of Fusarium culmorum for winter rye head blight. Plant Dis 80:500–504

    Article  Google Scholar 

  • Miedaner T, Heinrich N, Schneider B, Oettler G, Rohde S, Rabenstein F (2004) Estimation of deoxynivalenol (DON) content by symptom severity and exoantigen content for resistance selection in wheat and triticale. Euphytica 139:123–132

    Article  CAS  Google Scholar 

  • Miedaner T, Schneider B, Oettler G (2006) Means and variances for Fusarium head blight resistance of F2–derived lines from winter triticale and winter wheat crosses. Euphytica 152:405–411

    Article  Google Scholar 

  • Miedaner T, Würschum T, Maurer HP, Korzun V, Ebmeyer E, Reif JC (2011) Association mapping for Fusarium head blight resistance in soft European winter wheat. Mol Breed 28:647–655

    Article  Google Scholar 

  • Miedaner T, Hübner M, Korzun V, Schmiedchen B, Bauer E, Haseneyer G, Wilde P, Reif JC (2012) Genetic architecture of complex agronomic traits examined in two testcross populations of rye (Secale cereale L.). BMC Genomics 13:706

  • Oettler G, Wahle G (2001) Genotypic and environmental variation of resistance to head blight in triticale inoculated with Fusarium culmorum. Plant Breed 120:297–300

    Article  Google Scholar 

  • Oettler G, Heinrich N, Miedaner T (2004) Estimates of additive and dominance effects for Fusarium head blight resistance of winter triticale. Plant Breed 123:525–530

    Article  Google Scholar 

  • Piepho H-P, Williams ER, Fleck M (2006) A note on the analysis of designed experiments with complex treatment structure. Hort Science 41:446–452

    Google Scholar 

  • R Development Core Team (2012) R: A language and environment for statistical computing. http://www.r-project.org. Accessed 6 Dec 2013

  • Rieseberg LH, Widmer A, Arntz AM, Burke JM (2003) The genetic architecture necessary for transgressive segregation is common in both natural and domesticated populations. Philos Trans R Soc Lond B 358:1141–1147

    Article  CAS  Google Scholar 

  • Snijders CHA (1990) Genetic variation for resistance to Fusarium head blight in bread wheat. Euphytica 50:171–179

    Article  Google Scholar 

  • Snijders CHA, Perkowski J (1990) Effects of head blight caused by Fusarium culmorum on toxin content and weight of wheat kernels. Phytopathology 80:566–570

    Article  CAS  Google Scholar 

  • Srinivasachary Gosman N, Steed A, Simmonds J, Leverington-Waite M, Wang Y, Snape J, Nicholson P (2008) Susceptibility to Fusarium head blight is associated with the Rht-D1b semi-dwarfing allele in wheat. Theor Appl Genet 116:1145–1153

    Article  CAS  PubMed  Google Scholar 

  • Stram DO, Lee JW (1994) Variance component testing in the longitudinal mixed effects model. Biometrics 50:1171–1177

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    Article  CAS  PubMed  Google Scholar 

  • Utz HF (2012) PlabMQTL—software for meta-QTL analysis with composite interval mapping. Version 0.5s. PlabMQTL manual. Institute of Plant Breeding, Seed Science, and Population Genetics, Stuttgart

  • Van Ooijen JW (2006) JoinMap® 4. Software for the calculation of genetic linkage maps in experimental populations. Wageningen, Netherlands

    Google Scholar 

  • Voss HH, Holzapfel J, Hartl L, Korzun V, Rabenstein F, Ebmeyer E, Coester H, Kempf H, Miedaner T (2008) Effect of the Rht-D1 dwarfing locus on Fusarium head blight severity in three segregating populations of winter wheat. Plant Breed 127:333–339

    Article  Google Scholar 

  • Würschum T, Tucker MR, Reif JC, Maurer HP (2012) Improved efficiency of doubled haploid generation in hexaploid triticale by in vitro chromosome doubling. BMC Plant Biol 12:109

    Article  PubMed Central  PubMed  Google Scholar 

  • Zeng ZB (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972–10976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors want to thank Elmar A. Weissmann, Saatzucht Dr. Hege GbR, Waldenburg, for sharing the population with us and Jens Möhring for suggestions on the statistical analysis. We highly appreciate the excellent technical support of the teams at Hohenheim and Oberer Lindenhof. This research was partially funded by the German Federal Ministry of Education and Research (BMBF) under the promotional reference 0315414. Rasha Kalih had a grant from the German Academic Exchange Service (DAAD), Bonn. The responsibility of the content of this publication rests with the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The experiments comply with the current laws of Germany in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Miedaner.

Additional information

Communicated by X. Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalih, R., Maurer, H.P., Hackauf, B. et al. Effect of a rye dwarfing gene on plant height, heading stage, and Fusarium head blight in triticale (×Triticosecale Wittmack). Theor Appl Genet 127, 1527–1536 (2014). https://doi.org/10.1007/s00122-014-2316-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-014-2316-9

Keywords

Navigation