Skip to main content
Log in

Nonhost plant species as donors for resistance to pathogens with narrow host range I. Determination of nonhost status

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

In crop species where disease and pest problems are serious, a common strategy is to attempt to introduce genes for resistance from more or less related (wild) species by means of interspecific crosses. Little attention has been given to the question, whether such a donor species should be a host or a nonhost if the target pathogen is a highly specialized micro-organism.

In this paper it is discussed that, apart from obvious host and obvious nonhost relationships, various intermediate categories are to be discerned.

Aspects like small numbers of accessions, taxonomic problems, environmental conditions and the age of the inoculated plants further hamper clear-cut verdicts whether a plant species is a host or nonhost.

It is argued that, at least in the case of powdery mildew and rust fungi, histological observations are helpful in determining whether a predominant ‘resistance’ of a plant species is based on avoidance, on pre-haustorial or on post-haustorial defence mechanisms. The former two mechanisms are typical of nonhost relationships, the latter one is the predominant mechanism of major genic host resistance, although exceptions occur. The questions for plant breeders would be which mechanism would provide the most effective protection of the crop and which would be better suitable for transfer to crop species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, L. J. & M. M. Hoover, 1955. Disease resistance in wild species of tomato. Ohio Agric. Exp. Stn., Res. Bull. 752, 76 pp.

    Google Scholar 

  • Anikster, Y., 1984. The formae speciales. In: Bushnell, W. R. & A. P., Roelfs (Eds), The cereal rusts. Vol. I. Origins, specificity, structure and physiology. Acad. Press, N.Y., pp. 115–130.

    Google Scholar 

  • Bell, G. D. H. & F. G. H., Lupton, 1955. Investigations in the Triticinae. IV. Disease reactions of species of Triticum and Aegilops and of amphiploids between them. J. Agric. Sci. 46: 232–246.

    Google Scholar 

  • Bernhard, H., 1954. Über die Beeinflussung der Plasmopara-Resistenz interspezifischer Vitis-kreuzungen durch das vinifera-Genom. In: Montalenti, G. &A. Chiarugi (Eds), Proc. 9th Int. Congr. Genetics, II. Caryologia 6, suppl., pp. 1124–1128.

  • Bromfield, K. R. & S. J., Cevario, 1970. Greenhouse screening of peanut (Arachis hypogaea) for resistance to peanut rust (Puccinia arachidis). Plant Disease Reptr. 54: 381–383.

    Google Scholar 

  • Burdon, J. J. & D. R., Marshall, 1981. Isozyme variation between species and formae speciales of the genus Puccinia. Can. J. Bot. 59: 2628–2634.

    Google Scholar 

  • Clayton, E. E., 1954. Identifying disease resistance suited to interspecific transfer. J. Hered. 45: 273–277.

    Google Scholar 

  • Cummins, G. B., 1971. The rust fungi of cereals, grasses and bamboos. Springer Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Eshed, N. & A. Dinoor, 1973. Genetic studies on the specialization of crown rust into pathogenic varieties (formae speciales). (Abstract). Proc. 2nd Int. Congr. Plant Pathol., Minneapolis, Minnesota.

  • Eshed, N. & A., Dinoor, 1980. Genetics of pathogenicity in Puccinia coronata: pathogenic specialization at the host genus level. Phythopathology 70: 1042–1046.

    Google Scholar 

  • Freeman, E. M. & E. C., Johnson, 1911. The rusts of grains in the United States. USDA, Bureau of Plant Industry, Bull. 216, Vol. 28, pp. 87.

    Google Scholar 

  • Gäumann, E., 1959. Die Rostpilze Mitteleuropas. Beitr. Kryptogamenflora Schweiz. 12.

  • Gill, B. S., H. C., Sharma, W. J., Raupp, L. E., Browder, J. H., Hatchett, T. L., Harvey, J. G., Mosemann & J. G., Waines, 1985. Evaluation of Aegilops species for resistance to wheat powdery mildew, wheat leaf rust, Hessian fly, and greenbug. Plant Disease 69: 314–316.

    Google Scholar 

  • Hassebrauk, K., 1932. Graserinfektionen mit Getreiderosten. Arb. Biol. Reichsanst. 20: 165–182.

    Google Scholar 

  • Hawkes, J. G., 1977. The importance of wild germplasm in plant breeding. Euphytica 26: 615–621.

    Google Scholar 

  • Heath, M. C., 1982. Host defense mechanisms against infection by rust fungi. In: Scott, K. J. & A. K., Chakravorty (Eds), The rust fungi, Acad. Press, NY, pp. 223–245.

    Google Scholar 

  • Hijner, J. A., 1952. De gevoeligheid van wilde bieten voor het bietencystenaaltje (Heterodera schachtii). Meded. Inst. Rationele Suikerproductie 21: 1–13.

    Google Scholar 

  • Hirst, J. M. & O. J., Stedman, 1960. The epidemilogy of Phythophthora infestans. II. The source of inoculum. Ann. Appl. Biol. 48: 489–517.

    Google Scholar 

  • Hiura, U., 1978. Genetic basis of formae speciales in Erysiphe graminis DC. In: Spencer, D. M. (Ed.), The powdery mildews. Acad. Press. NY, pp. 101–128.

    Google Scholar 

  • Hyde, P. M. & J., Colhoun, 1975. Mechanisms of resistance of wheat to Erysiphe graminis f.sp. tritici. Phytopath. Z. 82: 185–206.

    Google Scholar 

  • Jaarsveld, A. B.van & P. J.du, Toit, 1984. A preliminary report on amino acid composition and gel-electrophoresis of powdery mildews from different hosts. Phytophylactica 16: 235–237.

    Google Scholar 

  • Johnson, L. E. B., W. R., Bushnell & R. J., Zeyen, 1982. Defense patterns in nonhost higher plants species against two powdery mildew fungi. I. Monocotyledonous species. Can. J. Bot. 60: 1068–1083.

    Google Scholar 

  • Johnson, T., 1949. Intervarietal crosses in Puccinia graminis. Can. J. Res. (C) 27: 45–65.

    Google Scholar 

  • Kihara, K., K., Yamashita & M., Tanaka, 1965. Morphological, physiological, genetical and cytological studies in Aegilops and Triticum collected from Pakistan, Afghanistan and Iran. Results of the Kyota Univ. Sci. Exped. to the Karakoram and Hindukush, 1955, Vol. 1, pp. 1–118.

    Google Scholar 

  • Kim, W. K., M. C., Heath & R., Rohringer, 1985a. Comparative analysis of proteins of Uromyces phaseoli var. typica, U. phaseoli var. vignae, and U. viciae-fabae: polypeptide mapping by two dimensional electrophoresis. Can. J. Bot. 63: 2144–2149.

    Google Scholar 

  • Kim, W. K., H. S., Shang & D. J., Samborski, 1985b. Electrophoresis analysis of detergent-soluble polypeptides of Puccinia recondita f.sp. tritici, P. recondita f.sp. secalis, P. hordei, and P. coronatd. Can. J. Plant Pathol. 7: 287–293.

    Google Scholar 

  • Knight, R. L., E., Keep, J. B., Briggs & J. H., Parker, 1974. Transference of resistance to black-currant gall mite, Cecidophyopsis ribis, from gooseberry to black currant. Ann. Appl. Biol. 76: 123–130.

    Google Scholar 

  • Knott, D. R. & J., Dvorak, 1976. Alien germplasm as a source of resistance to disease. Annu. Rev. Phytopath. 14: 211–235.

    Google Scholar 

  • Littlefield, L. J. & M. C. Heath, 1979. Ultrastructure of rust fungi. Acad. Press.

  • Lovell, N., 1985, cited by M. S. Wolff, Pathology and entomology department. Annu. Rep. 1984, Plant Breeding Inst., p. 87.

  • Lupton, F. G. H., 1956. Resistance mechanisms of species of Triticum and Aegilops and of amphidiploids between them to Erysiphe graminis DC. Trans.Br.mycol. Soc. 39: 51–59.

    Google Scholar 

  • Mains, E. B., 1933. Host specialization in the leaf rust of grasses, Puccinia rubigo-vera. Papers of the Michigan Acad.Sci. Arts and Letters 17: 289–394.

    Google Scholar 

  • Mann, T. J., D. U. Gerstel & J. L. Apple, 1963. The role of interspecific hybridization in tobacco disease control. Proc. 3rd World Tobacco Scient. Congr., Salisbury, S. Rhodesia, pp. 201–207.

  • Miller, S. A. & D. P., Maxwell, 1984. Ultrastructure of susceptible, host resistant and nonhost resistant interactions of alfalfa with Phytophthora megasperma. Can. J. Bot. 62: 117–128.

    Google Scholar 

  • Musa, G. L. C., P. L., Dyck & D. J., Samborski, 1984. The inheritance of resistance in rye to Puccinia recondita f.sp. secalis and f.sp. tritici. Can. J. Plant Sci. 64: 511–519.

    Google Scholar 

  • Newton, A. C., C. E., Caten & R., Johnson, 1985. Variation for isozymes and double stranded RNA among isolates of Puccinia striiformis and two other cereal rusts. Plant Pathology 34: 235–247.

    Google Scholar 

  • Newton, A. C., R., Johnson & C. E., Caten, 1986. Attempted somatic hybridization of Puccinia striiformis f.sp. tritici and P. striiformis f.sp. hordei. Plant Pathology 35: 108–113.

    Google Scholar 

  • Niks, R. E., 1981. Appressorium formation of Puccinia hordei on partially resistant barley and two non-host species. Neth. J. Plant Pathol. 87: 201–207.

    Google Scholar 

  • Niks, R. E., 1983a. Comparative histology of partial resistance and the nonhost reaction to leaf rust pathogens in barley and wheat seedlings. Phytopathology 73: 60–64.

    Google Scholar 

  • Niks, R. E., 1983b. Haustorium formation by Puccinia hordei in leaves of hypersensitive, partially resistant, and nonhost plant genotypes. Phytopathology 73: 64–66.

    Google Scholar 

  • Niks, R. E., 1986. Variation of mycelial morphology between species and formae speciales of rust fungi of cereals and grasses. Can. J. Bot. 64 2976–2983.

    Google Scholar 

  • Niks, R. E. & R. G., Dekens, 1987. Histological studies on the infection of triticale, wheat and rye by Puccinia recondita f.sp. tritici and P. recondita f.sp. recondita. Euphytica 36: 275–285.

    Google Scholar 

  • Parlevliet, J. E., 1979. The co-evolution of host-parasite systems. In: Hedberg, I. (Ed.), Parasites as plant taxonomists. Symb. Bot. Upsal. 22–4: 39–45.

  • Pasquini, M., 1980. Disease resistance in wheat. II. Behaviour of Aegilops species with respect to Puccinia recondita f.sp. tritici, Puccinia graminis f.sp. tritici, and Erysphe graminis f.sp. tritici. Genet. Agr. 34: 133–148.

    Google Scholar 

  • Raeber, J. G., M. A. Schweppenhauser & J. S. Cole, 1963. Sources of resistance to powdery mildew in the genus Nicotiana and observations on the transfer of resistance through interspecific hybridization. In: Proc. 3rd World Tobacco Scient. Congr., Salisbury, S. Rhodesia, pp. 230–236.

  • Savile, D. B. O., 1979. Fungi as aids to plant taxonomy: methodology and principles. In: Hedberg, I. (Ed.), Parasites as plant taxonomists. Symb. Bot. Upsal. 22–4: 135–145.

  • Scherz, W., 1938. Zur Immunitätszüchtung gegen Plasmopara viticola. Der Züchter 10: 299–312.

    Google Scholar 

  • Sharma, H. C. & B. S., Gill, 1983. Current status of wide hybridization in wheat. Euphytica 32: 17–31.

    Google Scholar 

  • Stakman, E. C., 1946. Plant pathologis's merry-go-round. J. Hered. 37: 259–265.

    Google Scholar 

  • Stalker, H. T., 1980. Utilization of wild species for crop improvement. Adv. Agron. 33: 111–147.

    Google Scholar 

  • Staub, T., H., Dahmen & F. J., Schwinn, 1974. Light- and scanning electron microscopy of cucumber and barley powdery mildew on host and nonhost plants. Phytopathology 64: 364–372.

    Google Scholar 

  • Straib, W., 1952. Bettrage zur Kenntnis der an Futtergräsern auftretenden Rostpilze. Zbl. Bakeriol. 2.Abt. 197: 3–39.

    Google Scholar 

  • The, T. T., 1976. Variability and inheritance studies in Triticum monococcum for reaction to P. graminis f.sp. tritici and P. recondita. Z. Pflanzenzüchtg. 76: 287–298.

    Google Scholar 

  • Tollenaar, H. & B. R., Houston, 1967. A study on the epidemiology of stripe rust, Puccinia striiformis West., in California. Can. J. Bot. 45: 291–307.

    Google Scholar 

  • Turkensteen, L. J., 1973. Partial resistance of tomatoes against Phytophthora infestans, the late blight fungus. Agric. Res. Rep. 810, Pudoc, Wageningen.

    Google Scholar 

  • Valkoun, J., K., Hammer, D., Kučerová & P., Bartoš, 1985. Disease resistance in the genus Aegilops L.-stem rust, leaf rust, stripe rust, and powdery mildew. Kulturpflanze 33: 133–153.

    Google Scholar 

  • Waterhouse, W. L., 1927. Studies in the inheritance of resistance to leaf rust, Puccinia anomala Rostr., in crosses of barley. I. J. Roy. Soc. N.S. Wales 61: 218–247.

    Google Scholar 

  • Watson, I. A., 1970. The utilization of wild species in the breeding of cultivated crops resistant to plant pathogens. In: Frankel, O. H. & E., Bennett (Eds), Genetic resources in plants — their exploration and conservation. Blackwell Scientific Publ. Oxford, pp. 441–457.

    Google Scholar 

  • White, N. H. & E. P., Baker, 1954. Host pathogen relations in powdery mildew of barley. 1. Histology of tissue reactions. Phytopathology 44: 657–662.

    Google Scholar 

  • Zadoks, J. C., 1961. Yellow rust on wheat, studies in epidemiology and physiologic specialization. Tijdschr. Pl. Ziekten 67: 69–256.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niks, R.E. Nonhost plant species as donors for resistance to pathogens with narrow host range I. Determination of nonhost status. Euphytica 36, 841–852 (1987). https://doi.org/10.1007/BF00051868

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00051868

Key words

Navigation