Skip to main content
Log in

Identification of a member of the catalase multigene family on wheat chromosome 7A associated with flour b* colour and biological significance of allelic variation

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Carotenoids (especially lutein) are known to be the pigment source for flour b* colour in bread wheat. Flour b* colour variation is controlled by a quantitative trait locus (QTL) on wheat chromosome 7AL and one gene from the carotenoid pathway, phytoene synthase, was functionally associated with the QTL on 7AL in some, but not all, wheat genotypes. A SNP marker within a sequence similar to catalase (Cat3-A1snp) derived from full-length (FL) cDNA (AK332460), however, was consistently associated with the QTL on 7AL and implicated in regulating hydrogen peroxide (H2O2) to control carotenoid accumulation affecting flour b* colour. The number of catalase genes on chromosome 7AL was investigated in this study to identify which gene may be implicated in flour b* variation and two were identified through interrogation of the draft wheat genome survey sequence consisting of five exons and a further two members having eight exons identified through comparative analysis with the single catalase gene on rice chromosome 6, PCR amplification and sequencing. It was evident that the catalase genes on chromosome 7A had duplicated and diverged during evolution relative to its counterpart on rice chromosome 6. The detection of transcripts in seeds, the co-location with Cat3-A1snp marker and maximised alignment of FL-cDNA (AK332460) with cognate genomic sequence indicated that TaCat3-A1 was the member of the catalase gene family associated with flour b* colour variation. Re-sequencing identified three alleles from three wheat varieties, TaCat3-A1a, TaCat3-A1b and TaCat3-A1c, and their predicted protein identified differences in peroxisomal targeting signal tri-peptide domain in the carboxyl terminal end providing new insights into their potential role in regulating cellular H2O2 that contribute to flour b* colour variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bariana HS, Parry N, Barclay IR, Loughman R, McLean RJ, Shankar M, Wilson RE, Willey NJ, Francki M (2006) Identification and characterization of stripe rust resistance gene Yr34 in common wheat. Theor Appl Genet 112:1143–1148

    Article  CAS  PubMed  Google Scholar 

  • Calucci L, Capocchi A, Galleschi L, Ghiringhelli S, Pinzino C, Saviozzi F, Zandomeneghi M (2004) Antioxidants, free radicals, storage proteins, puroindolines, and proteolytic activities in bread wheat (Triticum aestivum) seeds during accelerated aging. J Agric Food Chem 52:4274–4281

    Article  CAS  PubMed  Google Scholar 

  • Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci 61:192–208

    Article  CAS  PubMed  Google Scholar 

  • Crawford AC, Francki MG (2013) Chromosomal location of wheat genes of the carotenoid biosynthetic pathway and evidence of a catalase gene on chromosome 7A functionally associated with flour b* colour variation. Mol Gen Genet 288:483–493

    Article  CAS  Google Scholar 

  • Crawford AC, Stefanova K, Lambe W, McLean R, Wilson R, Barclay I, Francki MG (2011) Functional relationships of phytoene synthase alleles on chromosome 7A controlling flour colour variation in selected Australian wheat genotypes. Theor Appl Genet 123:95–108

    Article  CAS  PubMed  Google Scholar 

  • DellaPenna D, Pogson BJ (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Ann Rev Plant Biol 57:711–738

    Article  CAS  Google Scholar 

  • Flagel LE, Wendel JF (2009) Gene duplication and evolutionary novelty in plants. New Phytol 183:557–564

    Article  PubMed  Google Scholar 

  • Francki MG, Crasta OR, Sharma HC, Ohm HW, Anderson JM (1997) Structural organization of an alien Thinopyrum intermedium group 7 chromosome in U.S. soft red winter wheat (Triticum aestivum L.). Genome 40:716–722

    Article  CAS  PubMed  Google Scholar 

  • Fratianni A, Irano M, Panfili G, Acquistucci R (2005) Estimation of colour of durum wheat. Comparison of WSB, HPLC, and reflectance colourimetic measurements. J Agric Food Chem 53:2373–2378

    Article  CAS  PubMed  Google Scholar 

  • Frugoli JA, McPeek MA, Thomas TL, McClung CR (1998) Intron loss and gain during evolution of the catalase gene family in Angiosperms. Genetics 149:355–365

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gechev TS, Hille J (2005) Hydrogen peroxide as a signal controlling plant programmed cell death. J Cell Biol 168:17–20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • G-l Yan, Liang H-Y, Wang Z-Q, Yang X-F, Liu D, Liu J-F, Duan C-Q (2011) Important role of catalase in the production of b-carotene by recombinant Saccharomyces cereviseae under H2O2 stress. Curr Microbiol 62:1056–1061

    Article  Google Scholar 

  • Hentschel V, Kranl K, Hollmann J, Lindhauer MG, Bohm V, Bitsch R (2002) Spectrophotometric determination of yellow pigment content and evaluation of carotenoids by high-performance liquid chromatography in durum wheat grain. J Agric Food Chem 50:6663–6668

    Article  CAS  PubMed  Google Scholar 

  • Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Curr Op Plant Biol 4:210–218

    Article  CAS  Google Scholar 

  • Howitt CA, Pogson BJ (2006) Carotenoid accumulation and function in seeds and non-green tissue. Plant Cell Env 29:435–445

    Article  CAS  Google Scholar 

  • Iigusa H, Yoshida Y, Hasunuma K (2005) Oxygen and hydrogen peroxide enhance light-induced carotenoid synthesis in Neurospora crassa. FEBS Lett 579:4012–4016

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto M, Maekawa M, Saito A, Higo H, Higo K (1998) Evolutionary relationship of plant catalase genes inferred from intron-exon structures: isozyme divergence after separation of the monocots and dicots. Theor Appl Genet 97:9–19

    Article  CAS  Google Scholar 

  • Jayatilake DV, Tucker EJ, Bariana H, Kuchel H, Edwards J, McKay AC, Chalmers K, Mather DE (2013) Genetic mapping and marker development for resistance of wheat against the root lesion nematode Pratylenchus neglectus. BMC Plant Biol 13:230

    Article  PubMed Central  PubMed  Google Scholar 

  • Kamigaki A, Mano S, Terauchi K, Nishi Y, Tachibe-Kinoshita Y, Nito K, Kondo M, Hayashi M, Nishimura M, Esaka M (2013) Identification of peroxisomal targeting signal of pumpkin catalase and the binding analysis of PTS1 receptor. The Plant J 33:161–175

    Article  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Mentjies P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinform 28:1647–1649

    Article  Google Scholar 

  • Manly K, Cudmore R, Meer J (2001) Map Manager QTX, cross platform software for genetic mapping. Mamm Genome 12:930–932

    Article  CAS  PubMed  Google Scholar 

  • Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G (2010) Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot 61:4197–4220

    Article  CAS  PubMed  Google Scholar 

  • Miskelly DM (1984) Flour components affecting paste and noodle colour. J Sci Food Agric 35:463–471

    Article  Google Scholar 

  • Mittler R (2002) Oxidate stress, anitoxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237–1247

    Article  CAS  PubMed  Google Scholar 

  • Panfili G, Fratianni A, Irano M (2004) Improved normal-phase high performance liquid chromatography procedure for the determination of carotenoids in cereals. J Agric Food Chem 52:6373–6377

    Article  CAS  PubMed  Google Scholar 

  • Scandalios JG, Guan L, Polidoros AN (2007) Catalases in plants: gene structure, properties, regulation, and expression. In: Oxidative stress and the molecular biology of antioxidant defenses 2007, Cold Spring Harbour Laboratory Press, pp 343-406

  • Solovyev V, Kosarev P, Seledsov I, Vorobyev D (2006) Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol 7:10

    Article  Google Scholar 

  • Suzuki M, Ario T, Hatorri T, Nakamura K, Asahi T (1994) Isolation and characterization of two tightly linked catalase genes from castor bean that are differentially expressed. Plant Mol Biol 25:507–516

    Article  CAS  PubMed  Google Scholar 

  • The International Wheat Genome Sequencing Consortium (IWGSC) (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788. doi:10.1126/science.1251788

    Article  Google Scholar 

  • Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JAM (2007) Primer3Plus, an enhanced web interface to Primer3. Nucl Acid Res 35:W71–W74

    Article  Google Scholar 

  • Vandenabeele S, Van Der Kelen K, Dat J, Gadjev I, Boonefaes T, Morsa S, Rottiers P, Slooten L, Van Monatgu M, Zabeau M, Inzé D, Van Breusegem F (2003) A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco. Proc Natl Acad Sci 100:16113–16118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vandenabeele S, Vanderauwera S, Vuylsteke M, Rombauts S, Langebartels C, Seidlitz HK, Zabeau M, Van Monatgu M, Inzé D, Van Breusegem F (2004) Catalase deficiency drastically effects gene expression induced by high light in Arabidopsis thaliana. Plant J 39:45–58

    Article  CAS  PubMed  Google Scholar 

  • Veal EA, Day AM, Morgan BA (2007) Hydrogen peroxide sensing and signalling. Mol Cell 26:1–14

    Article  CAS  PubMed  Google Scholar 

  • Voorrips RE (2002) Mapchart: software for the graphical presentation of linkage maps and QTLs. J Hered 2002(3):77–78

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Francki.

Ethics declarations

Conflicts of interest

The authors declare they have no conflict of interest.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

438_2015_1083_MOESM1_ESM.pptx

Supplementary material 1 Agarose gel electrophoresis of PCR amplified DNA fragments using CAT3 primer sets from accessions Ajana, Carnamah, WAWHT2046, Chinese Spring and wheat lines nullisomic for chromosome 7A (N7A), chromosome 7B (N7B) and chromosome 7D (N7D) (PPTX 1903 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D.A., Walker, E. & Francki, M.G. Identification of a member of the catalase multigene family on wheat chromosome 7A associated with flour b* colour and biological significance of allelic variation. Mol Genet Genomics 290, 2313–2324 (2015). https://doi.org/10.1007/s00438-015-1083-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-015-1083-x

Keywords

Navigation