Skip to main content
Log in

Genetic analysis of the sugarcane (Saccharum spp.) cultivar ‘LCP 85-384’. I. Linkage mapping using AFLP, SSR, and TRAP markers

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Sugarcane hybrids are complex aneu-polyploids (2n = 100–130) derived from inter-specific hybridization between ancestral polyploid species, namely S. officinarum L. and S. spontaneum L. Efforts to understand the sugarcane genome have recently been enhanced through the use of new molecular marker technologies. A framework genetic linkage map of Louisiana’s popular cultivar LCP 85-384 was constructed using the selfed progeny and based on polymorphism derived from 64 AFLP, 19 SSR and 12 TRAP primer pairs. Of 1,111 polymorphic markers detected, 773 simplex (segregated in 3:1 ratio) and 182 duplex (segregate in 77:4 ratio) markers were used to construct the map using a LOD value of ≥4.0 and recombination threshold of 0.44. The genetic distances between pairs of markers linked in the coupling phase was computed using the Kosambi mapping function. Of the 955 markers, 718 simplex and 66 duplex markers were assigned to 108 co-segregation groups (CGs) with a cumulative map length of 5,617 cM and a density of 7.16 cM per marker. Fifty-five simplex and 116 duplex markers remained unlinked. With an estimated genome size of 12,313 cM for LCP 85-384, the map covered approximately 45.6% of the genome. Forty-four of the 108 CGs were assigned into 9 homo(eo)logous groups (HGs) based on information from locus-specific SSR and duplex markers, and repulsion phase linkages detected between CGs. Meiotic behavior of chromosomes in cytogenetic studies and repulsion phase linkage analysis between CGs in this study inferred the existence of strong preferential chromosome pairing behavior in LCP 85-384. This framework map marks an important beginning for future mapping of QTLs associated with important agronomic traits in the Louisiana sugarcane breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aitken KS, Jackson PA, McIntyre CL (2005) A combination of AFLP and SSR markers provide extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. Theor Appl Genet 110:789–801

    Article  PubMed  CAS  Google Scholar 

  • Aitken KS, Jackson PA, McIntyre CL (2007) Construction of genetic linkage map for Saccharum officinarum incorporating both simplex and duplex markers to increase genome coverage. Genome 50:742–756

    Article  PubMed  CAS  Google Scholar 

  • Al-Janabi SM, Honeycutt RJ, McClelland M, Sobral BWS (1993) A genetic linkage map of Saccharum spontaneum L. ‘SES 208’. Genetics 134:1249–1260

    PubMed  CAS  Google Scholar 

  • Alwala S, Suman A, Arro JA, Veremis JC, Kimbeng CA (2006) Target region amplification polymorphism (TRAP) for assessing genetic diversity in sugarcane germplasm collections. Crop Sci 46:448–455

    Article  CAS  Google Scholar 

  • Alwala S, Kimbeng CA, Veremis JC, Gravois KA (2008) Linkage mapping and genome analysis in Saccharum interspecific cross using AFLP, SRAP and TRAP markers. Euphytica 164:37–51

    Article  CAS  Google Scholar 

  • Arro JA, Veremis JC, Kimbeng CA, Botanga C (2006) Genetic diversity and relationships revealed by AFLP among a collection of Saccharum spontaneum and related species and genera. J Am Soc Sugar Cane Tech 26:101–115

    Google Scholar 

  • Asnaghi C, Paulet F, Kaye C, Grivet L, Deu M, Glaszmann JC, D’Hont A (2000) Application of synteny across Poaceae to determine the map location of a sugarcane rust resistance gene. Theor Appl Genet 101:962–969

    Article  CAS  Google Scholar 

  • Asnaghi C, Roques D, Ruffel S, Kaye C, Hoarau JY, Te`lismart H, Girard JC, Raboin LM, Risterucci AM, Grivet L, D’Hont A (2004) Targeted mapping of a sugarcane rust resistance gene (Bru1) using bulked segregant analysis and AFLP markers. Theor Appl Genet 108:759–764

    Article  PubMed  CAS  Google Scholar 

  • Atienza SG, Satovic Z, Peterson KK, Dolstra O, Martin A (2002) Preliminary genetic linkage map of Miscanthus sinensis with RAPD markers. Theor Appl Genet 105:946–952

    Article  PubMed  CAS  Google Scholar 

  • Bailey NTJ (1961) Introduction to mathematical theory of genetic linkage. Oxford University Press, London

    Google Scholar 

  • Barnes JM, Bester AE (2000) Genetic mapping in sugarcane: prospects and progress in the South African sugar industry. Proc S Afr Sugar Tech Assoc 74

  • Berding N, Roach BT (1987) Germplasm collection, maintenance, and use. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 143–210

    Google Scholar 

  • Bhat SR, Gill BS (1985) The implication of 2n egg gametes in nobilisation and breeding of sugarcane. Euphytica 34:377–384

    Article  Google Scholar 

  • Brandes EW (1958) Origin, classification and characteristics. In: Artschwager E, Brandes EW (eds) Sugarcane (S. officinarum L.). USDA Agriculture Handbook, vol 122, pp 1–35, 260–262

  • Bremer G (1961) Problems in breeding and cytology of sugarcane. Euphytica 10:59–78

    Article  Google Scholar 

  • Burner DM (1991) Cytogenetic analyses of sugarcane relatives (Andropogoneae: Saccharinae. Euphytica 54:125–133

    Article  Google Scholar 

  • Burner DM (1994) Cytogenetic and fertility characteristics of elite sugarcane clones. Sugar cane 1:6–10

    Google Scholar 

  • Burner DM, Legendre BL (1994) Cytogentic and fertility charecteristics of elite sugarcane clones. Sugarcane 1:6–10

    Google Scholar 

  • Cordeiro GM, Taylor GO, Henry RJ (2000) Characterisation of microsatellite markers from sugarcane (Saccharum sp.), a highly polymorphic species. Plant Sci 155:161–168

    Article  PubMed  CAS  Google Scholar 

  • Crawford DJ, Smith EB (1984) Allozyme divergence and intraspecific variation in Coreopsis graniflora (Compositae.). Syst Bot 9:219–225

    Article  Google Scholar 

  • Cunff LL, Garsmeur O, Raboin LM, Pauquet J, Telismart H, Selvi A, Grivet L, Philippe R, Begum D, Deu M, Costet L, Wing R, Glaszmann JC, D’Hont A (2008) Diploid/polyploidy syntenic shuttle mapping and haplotype-specific chromosome walking toward a rust reistance gene (Bru1) in highly polyploid sugarcane (2n 12x 115). Genetics 180:649–660

    Article  PubMed  Google Scholar 

  • d’Hont A, Lu YH, de León DG, Grivet L, Feldmann P, Lanaud C, Glaszmann JC (1994) A molecular approach to unraveling the genetics of sugarcane, a complex polyploid of the Andropogoneae tribe. Genome 37(2):222–230

    Article  PubMed  Google Scholar 

  • d’Hont A, Grivet L, Feldmann P, Rao PS, Berding N, Glazmann JC (1996) Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp) by molecular cytogenetics. Mol Gen Genet 250:405–413

    PubMed  Google Scholar 

  • d’Hont A, Ison D, Alix K, Roux C, Glazmann JC (1998) Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes. Genome 41:221–225

    Google Scholar 

  • da Silva JAG, Sorrells ME, Burnquist W, Tanksley SD (1993) RFLP linkage map and genome analysis of Saccharum spontaneum. Genome 36:782–791

    Article  CAS  Google Scholar 

  • Daugrois JH, Grivet L, Grivet L, Roques D, Hoarau JY, Lombard H, Glaszmann JC, D’Hont A (1996) Putative major gene for rust resistance linked with a RFLP marker in sugarcane cultivar ‘R570’. Theor Appl Genet 92(8):1059–1064

    Article  CAS  Google Scholar 

  • Edmé SJ, Glynn NG, Comstock JC (2006) Genetic segregation of microsatellite markers in Saccharum officinarum and S. spontaneum. Heredity 97:366–375

    Article  PubMed  Google Scholar 

  • Garcia AAF, Kido EA, Meza AN, Souza HMB, Pinto LR, Pastina MM, Leite CS, Da Silva JAG, Ulian EC, Figueira A, Souza AP (2006) Development of an integrated genetic map of a sugarcane (Saccharum spp.) commercial cross, based on a maximum-likelihood approach for estimation of linkage and linkage phases. Theor Appl Genet 112:298–314

    Article  PubMed  CAS  Google Scholar 

  • Gravois KA, Bischoff KP (2008) New sugarcane varieties to the rescue. La Agric 51(2):14–16

    Google Scholar 

  • Grivet L, D’Hont A, Roques D, Feldmann P, Lanaud C, Glaszmann JC (1996) RFLP mapping in a highly polyploid and aneuploid interspecific hybrid. Genetics 142:987–987

    PubMed  CAS  Google Scholar 

  • Guimaráes CT, Honeycutt RJ, Sills GR, Sobral BWS (1999) Genetic linkage maps of Saccharum officinarum L. and Saccharum robustum Brandes & Jew. Ex Grassl. Genet Mol Biol 22:125–132

    Article  Google Scholar 

  • Hoarau JY, Offmann B, D’Hont A, Risterucci AM, Roques D, Glaszmann JC, Grivet L (2001) Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). I. Genome mapping with AFLP markers. Theor Appl Genet 103:84–97

    Article  CAS  Google Scholar 

  • Hogarth DM (1987) Genetics of Sugarcane. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, New York, pp 255–271

    Google Scholar 

  • Hvarleva TD, Russanov KE, Bakalova AT, Zhiponova MK, Djakova GJ, Atanassov AI, Atanassov II (2009) Microsatellite linkage map based on F2 population from Bulgarian grapevine cultivar Storgozia. Biotech Biotech Eq. 23/2009/1

  • Jannoo N, Grivet L, Dookun A, D‘Hont A, Glaszmann JC (1999) Linkage disequilibrium among modern sugarcane cultivars. Theor Appl Genet 99:1053–1060

    Google Scholar 

  • Jannoo N, Grivet L, David J, D’Hont A, Glaszmann JC (2004) Differential chromosome pairing affinities at meiosis in polyploid sugarcane revealed by molecular markers. Heredity 93:460–467

    Article  PubMed  CAS  Google Scholar 

  • Jenczewski E, Gherandi M, Bonnin I, Prosperi JM, Oliveri I, Hugget T (1997) Insight on segregation distortions in two intraspecific crosses between annual species of Medicago (Leguminosae). Theor Appl Genet 94:682–691

    Article  Google Scholar 

  • Kriegner A, Cervantes JC, burg K, burg K, Mwanga ROM, Zhang D (2003) A genetic linkage map of sweetpotato [Ipomoea batatas (L.) Lam.] based on AFLP markers. Mol Breed 11:169–185

    Article  CAS  Google Scholar 

  • Lu YH, d’Hont A, Paulet F, Grivet L, Arnaud M, Glaszmann JC (1994) Molecular diversity and genome structure in modern sugarcane varieties. Euphytica 78:217–226

    Article  Google Scholar 

  • Mather K (1957) The measurement of linkage in heredity. Wiley, New York

    Google Scholar 

  • Milligan SB, Martin FA, Bischoff KP, Quebedeaux JP, Dufrene EO, Quebedeaux KL, Hoy JW, Reagan TE, Legendre BL, Miller JD (1994) Registration of ‘LCP 85-384’ sugarcane. Crop Sci 34:819–820

    Article  Google Scholar 

  • Ming R, Liu SC, Lin YR, Da Silva JAG, Wilson W, Braga D, van Devnze A, Wenslaff F, Wu KK, Moore PH, Burnquist W, Sorrells ME, Irvine JE, Paterson AH (1998) Detailed alignment of Saccharum and Sorghum chromosomes: comparative organization of closely related diploid and polyploid genomes. Genetics 150:1663–1682

    PubMed  CAS  Google Scholar 

  • Ming R, Liu S-C, Bowers JE, Moore PH, Irvine JE, Paterson AH (2002) Construction of Saccharum consensus genetic map from two interspecific crosses. Crop Sci 42:570–583

    Article  CAS  Google Scholar 

  • Missaoui AM, Paterson AH, Bouton JH (2005) Investigation of genomic organization in switchgrass (Panicum virgatum L.) using DNA markers. Theor Appl Genet 110:1372–1383

    Article  PubMed  CAS  Google Scholar 

  • Mudge J, Andersen WR, Kehrer RL, Fairbanks DJ (1996) A RAPD genetic map of Saccharum officinarum. Crop Sci 36:1362–1366

    Article  CAS  Google Scholar 

  • Oliveira KM, Pinto LR, Marconi TG, Margarido GRA, Pastina MM, Teixeira LHM, Figueira AV, Ulian EC, Garcia AAF, Souza AP (2007) Functional integrated genetic linkage map based on EST-markers for a sugarcane (Saccharum spp.) commercial cross. Mol Breed 20:189–208

    Article  CAS  Google Scholar 

  • Pan Y-B (2006) Highly polymorphic microsatellite DNA markers for sugarcane germplasm evaluation and variety identity testing. Sugar Technol 8(4):246–256

    Article  CAS  Google Scholar 

  • Price S (1963) Cytogenetics of modern sugar canes. Econ Bot 17:97–105

    Google Scholar 

  • Qu L, Hancock JF (2001) Detecting and mapping repulsion phase linkages in polyploids with polysomic inheritance. Theor Appl Genet 103:136–143

    Google Scholar 

  • Raboin LM, Oliveira KM, Lecunff L, Telismart H, Roques D, Butterfield M, Hoarau JY, D’Hont A (2006) Genetic mapping in sugarcane, a high polyploidy, using bi-parental progeny: identification of a gene controlling stalk colour and a new rust resistance gene. Theor Appl Genet 112:1382–1391

    Article  PubMed  CAS  Google Scholar 

  • Ripol MI, Churchill GA, da Silva JAG, Sorrells M (1999) Statistical aspects of genetic mapping in autopolyploids. Gene 235:31–41

    Article  PubMed  CAS  Google Scholar 

  • Roach BT (1972) Nobilization of sugarcane. Proc Int Soc Sugar Cane Technol 14:206–216

    Google Scholar 

  • Smith L (1947) The acetocarmine smear technique. Stain Technol 22:17–31

    PubMed  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry. W.H. Freeman and Co, New York

    Google Scholar 

  • Sreenivasan TV (1975) Cytogenetical studies in Saccharum spontaneum L. Proc Indian Acad Sci 81:131-144

  • Stevenson GC (1965) Genetics and breeding of sugarcane. Longmans, Green and Co Ltd, London

    Google Scholar 

  • Suman A (2009) Genetic linkage map of LCP 85-384, genetic diversity of a S. spontaneum collection and the contribution of S. spontaneum to Louisiana commercial germplasm. Louisiana State University, USA

    Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) joinmap 3.0. Software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot L, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Woram RA, McGowan C, Stout JA, Gharbi K, Ferguson MM, Hoyheim B, Davidson EA, Davidson WS, Rexraod C, Danzmann (2004) A genetic linkage map for Arctic char (Salvelinus alpinus): evidence for higher recombination rates and segregation distortion in hybrid versus pure strain mapping parents. Genome 47:304–315

    Article  PubMed  CAS  Google Scholar 

  • Wright JE, Johnson K, Hollister A, May B (1983) Meiotic models to explain classical linkage, pseudolinkage, and chromosomal pairing in tetraploid derivative salmonid genomes. Isozymes Curr Top Biol Med Res 10:239–260

    PubMed  Google Scholar 

  • Wu KK, Burnquist W, Sorrells ME, Tew TL, Moore PH, Tanksley SD (1992) The detection and estimation of linkage in polyploids using single-dose restriction fragments. Theor Appl Genet 83:294–300

    Article  Google Scholar 

  • Zamir D, Tadmor Y (1986) Unequal segregation of nuclear genes in plants. Botany Gazette 147:355–358

    Article  Google Scholar 

Download references

Acknowledgments

We thank Johan W. Van Ooijen for his kind assistance on how best to use the JoinMap 3.0 software in mapping a polyploid species. We also appreciate Anudeep Paturi, Lionel Lomax, and Jennifer Shaw for their immense help in this project. Financial support from the American Sugar Cane League of the USA, Inc., and the School of Plant, Environmental and Soil Sciences, Louisiana State University are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Collins A. Kimbeng.

Additional information

Communicated by T. Close.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andru, S., Pan, YB., Thongthawee, S. et al. Genetic analysis of the sugarcane (Saccharum spp.) cultivar ‘LCP 85-384’. I. Linkage mapping using AFLP, SSR, and TRAP markers. Theor Appl Genet 123, 77–93 (2011). https://doi.org/10.1007/s00122-011-1568-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1568-x

Keywords

Navigation