Skip to main content
Log in

Comparative mapping of the Oregon Wolfe Barley using doubled haploid lines derived from female and male gametes

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The Oregon Wolfe Barley mapping population is a resource for genetics research and instruction. Prior reports are based on a population of doubled haploid (DH) lines developed by the Hordeum bulbosum (H.b.) method, which samples female gametes. We developed new DH lines from the same cross using anther culture (A.C.), which samples male gametes. Linkage maps were generated in each of the two subpopulations using the same 1,328 single nucleotide polymorphism markers. The linkage maps based on DH lines derived from the products of megasporogeneis and microsporogenesis revealed minor differences in terms of estimated recombination rates. There were no differences in locus ordering. There was greater segregation distortion in the A.C.-derived subpopulation than in the H.b.-derived subpopulation, but in the region showing the greatest distortion, the cause was more likely allelic variation at the ZEO1 plant height locus rather than to DH production method. The effects of segregation distortion and pleiotropy had greater impacts on estimates of quantitative trait locus effect than population size for reproductive fitness traits assayed under greenhouse conditions. The Oregon Wolfe Barley (OWB) population and data are community resources. Seed is available from three distribution centers located in North America, Europe, and Asia. Details on ordering seed sets, as well as complete genotype and phenotype data files, are available at http://wheat.pw.usda.gov/ggpages/maps/OWB/.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Börner A, Buck-Sorlin GH, Hayes PM, Malyshev S, Korzun V (2002) Molecular mapping of major genes and quantitative trait loci determining flowering time in response to photoperiod in barley. Plant Breed 121:129–132

    Article  Google Scholar 

  • Chen FQ, Prehn D, Hayes PM, Mulrooney D, Corey A, Vivar H (1994) Mapping genes for resistance to barley stripe rust (Puccinia striiformis f. sp. hordei). Theor Appl Genet 88:215–219

    CAS  Google Scholar 

  • Cistué L, Vallés MP, Echávarri B, Sanz JM, Castillo AM (2003) Barley anther culture. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (2003) Doubled haploid production in crop plants: a manual. Kluwer, Dordrecht, pp 29–35

  • Cistué L, Echávarri B, Batlle F, Soriano M, Castillo A, Vallés MP, Romagosa I (2005) Segregation distortion for agronomic traits in doubled haploid lines of barley. Plant Breed 124:546–550

    Article  Google Scholar 

  • Cistué L, Romagosa I, Batlle F, Echávarri B (2009) Improvements in the production of doubled haploids in durum wheat (Triticum turgidum L.) through isolated microspore culture. Plant Cell Rep 28:727–735

    Article  PubMed  Google Scholar 

  • Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson JT, Wanamaker S, Bozdag S, Roose ML, Moscou M, Chao S, Varshney RK, Sücs P, Sato K, Hayes PM, Matthews DE, Kleinhofs A, Muehlbauer G, DeYoung J, Marshall D, Madishetty K, Fenton RD, Condamine P, Graner A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10:582

    Article  PubMed  Google Scholar 

  • Costa JM, Corey A, Hayes PM, Jobet C, Kleinhofs A, Kopisch-Obusch A, Kramer SF, Kudrna D, Li M, Riera-Lizarazu O, Sato K, Szücs P, Toojinda T, Vales MI, Wolfe RI (2001) Molecular mapping of the Oregon Wolfe Barleys: a phenotypically polymorphic doubled-haploid population. Theor Appl Genet 103:415–424

    Article  CAS  Google Scholar 

  • Devaux P, Kilian A, Kleinhofs A (1995) Comparative mapping of the barley genome with male and female recombination-derived, doubled haploid populations. Mol Gen Genet 249:600–608

    Article  PubMed  CAS  Google Scholar 

  • Febrer M, Wilhelm E, Al-Kaff N, Wright J, Powell W, Bevan MW, Boulton MI (2009) Rapid identification of the three homoeologues of the wheat dwarfing gene Rht using a novel PCR-based screen of three-dimensional BAC pools. Genome 52:993–1000

    Article  PubMed  CAS  Google Scholar 

  • Foisset N, Delourne R (1996) Segregation distortion in androgenic plants. In: Jain SM, Spory SK, Veilleux RE (eds) In: Vitro haploid production in higher plants, vol 2. Kluwer, Dordrecht, pp 189—201

  • Forster BP, Heberle-Bors E, Kasha KJ, Touraev A (2007) The resurgence of haploids in higher plants. Trends in Plant Sci 12:368–375

    Article  CAS  Google Scholar 

  • Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Herrmann RG (1991) Construction of an RFLP map of barley. Theor Appl Genet 83:250–256

    Article  Google Scholar 

  • Guzy-Wrobelska J, Szarejko I (2003) Molecular and agronomic evaluation of wheat doubled haploid lines obtained through maize pollination and anther culture methods. Plant Breed 122:305–313

    Article  CAS  Google Scholar 

  • Guzy-Wrobelska J, Labocha-Pawlowska A, Kwasniewski M, Szarejko I (2007) Different recombination frequencies in wheat doubled haploid populations obtained through maize pollination and anther culture. Euphytica 156:173–183

    Google Scholar 

  • Hearden PR, Eckermann PJ, McMichael GL, Hayden MJ, Eglinton JK, Chalmers KJ (2007) A genetic map of 1, 000 SSR and DArT markers in a wide barley cross. Theor Appl Genet 115:383–391

    Article  Google Scholar 

  • Hunter CP (1988) Plant regeneration from microspores of barley, Hordeum vulgare. PhD Thesis, Wye College, University of London, London

  • Jacquard C, Nolin F, Hécart C, Grauda D, Rashal I, Dhondt-Cordelier S, Sangwan RS, Devaux P, Mazeyrat-Gourbeyre F, Clément C (2009) Microspore embryogenesis and programmed cell death in barley: effects of copper on albinism in recalcitrant cultivars. Plant Cell Rep 28:1329–1339

    Article  PubMed  CAS  Google Scholar 

  • Jafary H, Albertazzi G, Marcel TC, Niks R (2008) High diversity of genes for nonhost resistance of barley to heterologous rust fungi. Genetics 178:2327–2339

    Article  PubMed  CAS  Google Scholar 

  • Jia QJ, Zhang JJ, Westcott S, Zhang XQ, Bellgard M, Lance R, Li CD (2009) GA-20 oxidase as a candidate for the semidwarf gene sdw1/denso in barley. Funct Integr Genomics 9:255–262

    Article  PubMed  CAS  Google Scholar 

  • Kao CH, Zeng ZB, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216

    PubMed  CAS  Google Scholar 

  • Karakousis A, Gustafson JP, Chalmers KJ, Barr AR, Langridge P (2003) A consensus map of barley integrating SSR, RFLP, and AFLP markers. Aust J Agric Res 54:1173–1185

    Article  CAS  Google Scholar 

  • Kasha KJ, Kao KN (1970) High frequency haploid production in barley (Hordeum vulgare L.). Nature 225:874–876

    Article  PubMed  CAS  Google Scholar 

  • Kota R, Varshney RK, Thiel T, Dehmer KJ, Graner A (2001) Generation and comparison of EST-derived SSRs and SNPs in barley (Hordeum vulgare L.). J Hered 135:145–151

    CAS  Google Scholar 

  • Kuenzel G, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154:397–412

    Google Scholar 

  • Lambrides CJ, Godwin ID, Lawn RJ, Imrie BC (2004) Segregation distortion for seed testa color in mungbean (Vigna radiata L. Wilcek). J Hered 95(6):532–535

    Article  PubMed  CAS  Google Scholar 

  • Lapitan VC, Redoña ED, Abe T, Brar DS (2009) Molecular characterization and agronomic performance of DH lines from the F1 of indica and japonica cultivar of rice (Oryza sativa L.). Field Crops Res 112:222–228

    Article  Google Scholar 

  • Lenormand T, Dutheil L (2005) Recombination difference between sexes: a role for haploid selection. PLoS Biol 3:396–403

    Article  CAS  Google Scholar 

  • Li J, Hsia A, Schnable PS (2007) Recent advances in plant recombination. Curr Opin Plant Biol 10:131–135

    Article  PubMed  CAS  Google Scholar 

  • Lu H, Romero-Severson J, Bernardo R (2002) Chromosomal regions associated with segregation distortion in maize. Theor Appl Genet 105:622–628

    Article  PubMed  CAS  Google Scholar 

  • Lundqvist U, Lundqvist A (1998) Intermedium mutants in barley (Hordeum vulgare L.): diversity, interactions and plant breeding value. J Appl Genet 39:85–96

    Google Scholar 

  • Ma H, Busch RH, Riera-Lizarazu O, Rines HW, Dill-Macky R (1999) Agronomic performance of lines derived from anther culture, maize pollination and single-seed descent in a spring wheat cross. Theor Appl Genet 99:432–436

    Article  Google Scholar 

  • Maluszynski M, Kasha KJ, Forster BP, Szarejko I (2003) Doubled haploid production in crop plants: a manual. Kluwer, Dordrecht, pp 21–52

    Google Scholar 

  • Manninen OM (2000) Associations between anther-culture response and molecular markers on chromosomes 2H, 3H and 4H of barley (Hordeum vulgare L.). Theor Appl Genet 100:57–62

    Article  CAS  Google Scholar 

  • Marquez-Cedillo LA, Hayes PM, Kleinhofs A, Legge WG, Rossnagel BG, Sato K, Ullrich SE, Wesenberg DM (2001) QTL analysis of agronomic traits in barley based on the doubled haploid progeny of two elite North American varieties representing different germplasm groups. Theor Appl Genet 103:625–637

    Article  CAS  Google Scholar 

  • Marshall DL, Marieken GM, Shaner MGM, Oliva JP (2007) Effects of pollen load size on seed paternity in wild radish: the roles of pollen competition and mate choice. Evolution 61:1925–1937

    Article  PubMed  Google Scholar 

  • Melchinger AE, Utz HF, Schön CC (1998) Quantitative Trait Locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149:383–403

    PubMed  CAS  Google Scholar 

  • Mezard C (2006) Meiotic recombination hotspots in plants. Biochem Soc Trans 34:531–534

    Article  PubMed  CAS  Google Scholar 

  • Muñoz-Amatriain M, Castillo AM, Chen XW, Cistué L, Vallés MP (2008) Identification and validation of QTLs for green plant percentage in barley (Hordeum vulgare L.) anther culture. Mol Breed 22:119–129

    Article  Google Scholar 

  • Payne RW (2006) The Guide to GenStat Release 9. VSN International, Hertfordshire

    Google Scholar 

  • Rikiishi K, Saisho D, Takeda K (2008) Uzu, a barley semi-dwarf gene, suppresses plant regeneration in calli derived from immature embryos. Breed Sci 58:149–155

    Article  Google Scholar 

  • Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L, Booth A, Svensson JT, Wanamaker SI, Walia H, Rodriguez EM, Hedley PE, Liu H, Morris J, Close TJ, Marshall DF, Waugh R (2005) Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol Genet Genomics 274:515–527

    Article  PubMed  CAS  Google Scholar 

  • Stein N, Prasad M, Scholz U, Thiel T, Zhang H, Wolf M, Kota R, Varshney RK, Perovic D, Grosse I, Graner A (2007) A 1, 000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor Appl Genet 114:823–839

    Article  PubMed  CAS  Google Scholar 

  • Supena EDJ, Winarto B, Riksen T, Dubas E, van Lammeren A, Offringa R, Boutilier K, Custers J (2008) Regeneration of zygotic-like microspore-derived embryos suggests an important role for the suspensor in early embryo patterning. J Exp Bot 59:803–814

    Article  PubMed  CAS  Google Scholar 

  • Szücs P, Blake VC, Bhat PR, Chao S, Close TJ, Cuesta-Marcos A, Muehlbauer GJ, Ramsay L, Waugh R, Hayes PM (2009) An integrated resource for barley linkage map and malting quality QTL alignment. The Plant Genome 2:1–7

    Article  Google Scholar 

  • Thomas WTB, Forster BP, Gertsson B (2003) Doubled haploids in breeding. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer, Dordrecht, pp 337–350

    Google Scholar 

  • Törjék O, Witucka-Wall H, Meyer RC, von Korff M, Kusterer B, Rautengarten C, Altmann T (2006) Segregation distortion in Arabidopsis C24/Col-0 and Col-0/C24 recombinant inbred line populations is due to reduced fertility caused by epistatic interaction of two loci. Theor Appl Genet 113:1551–1561

    Article  PubMed  Google Scholar 

  • Torp AM, Andersen SB (2009) Albinism in microspore culture. Touraev A et al. (eds) Advances in haploid production in higher plants, Chap. 12. Springer Science, New York, pp.155–160

  • Vales MI, Schön CC, Capettini F, Chen XM, Corey AE, Mather DE, Mundt CC, Richarson KL, Sandoval-Islas JS, Utz HF, Hayes PM (2005) Effect of population size on the estimation of QTL: a test using resistance to barley stripe rust. Theor Appl Genet 111:1260–1270

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen JW (2006) JoinMap R 4.0, Software for the calculation of genetic linkage maps in experimental populations. Kyazma V.V., Wageningen

    Google Scholar 

  • Varshney RK, Marcel TC, Ramsay L, Russell J, Röder MS, Stein N, Waugh R, Langridge P, Niks RE, Graner A (2007) A high density barley microsatellite consensus map with 775 SSR loci. Theor Appl Genet 114:1091–1103

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng Z-B (2001–2003) Windows QTL cartographer 2.5. Department of Statistics, North Carolina.State University, Raleigh, NC, USA

  • Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesná J, Cakir M, Poulsen D, Wang J, Raman R, Smith KP, Muehlbauer GJ, Chalmers KJ, Kleinhofs A, Huttner E, Kilian A (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics 7:206

    Article  PubMed  Google Scholar 

  • Wolfe RI (1972) A multiple stock in Brandon, Canada. Barley Genet Newsl 2:170

    Google Scholar 

  • Wolfe RI, Franckowiak JD (1991) Multiple dominant and recessive genetic marker stocks in spring barley. Barley Genet Newsl 20:117–121

    Google Scholar 

  • Xian-Liang S, Xue-Zhen S, Tian-Zhen Z (2006) Segregation distortion and its effect on genetic mapping in plants. Chin J Agric Biotech 3:163–169

    Google Scholar 

  • Xu Y, Zhu L, Xiao J, Huang N, McCouch SR (1997) Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.). Mol Gen Genet 253:535–545

    Article  PubMed  CAS  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

  • Zhu H, Gilchrist L, Hayes P, Kleinhofs A, Kudrna D, Liu Z, Prom L, Steffenson B, Toojinda T, Vivar H (1999) Does function follow form? Principal QTLs for Fusarium head blight (FHB) resistance are coincident with QTLs for inflorescence traits and plant height in a doubled-haploid population of barley. Theor Appl Genet 99:1221–1232

    Article  CAS  Google Scholar 

Download references

Acknowledgments

L. Cistué was recipient of a Senior Research Fellowship from the Spanish Ministry of Science and Innovation during his time with the Oregon State University Barley Project and his research was financed by the Spanish Ministry of Science and Innovation thought the National Plan Projects AGL2005-07195-C02-01 and AGL2008-05541-C02-01. Alfonso Cuesta-Marcos was supported by a postdoctoral fellowship from the Spanish Ministerio de Ciencia e Innovación (MICINN). The BOPA SNPs were developed under the auspices of USDA-CSREES-NRI Grant No 2006- 55606-16722 “Barley Coordinated Agricultural Project: Leveraging Genomics, Genetics, and Breeding for Gene Discovery and Barley Improvement”. This paper is dedicated to Dr. Bob Wolfe, whose vision and persistence led to the development of the Wolfe dominant and recessive marker stocks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Cistué.

Additional information

Communicated by A. Graner.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cistué, L., Cuesta-Marcos, A., Chao, S. et al. Comparative mapping of the Oregon Wolfe Barley using doubled haploid lines derived from female and male gametes. Theor Appl Genet 122, 1399–1410 (2011). https://doi.org/10.1007/s00122-011-1540-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1540-9

Keywords

Navigation