Skip to main content

Advertisement

Log in

High-resolution melting analysis of cDNA-derived PCR amplicons for rapid and cost-effective identification of novel alleles in barley

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

An original method has been established for the identification of novel alleles of eukaryotic translation initiation factor 4E (eIF4E) gene, which is required for resistance to agronomically important bymoviruses, in barley germplasm. This method involves scanning for sequence variations in cDNA-derived PCR amplicons using High-resolution melting (HRM) followed by direct Sanger sequencing of only those amplicons which were predicted to carry nucleotide changes. HRM is a simple, cost-effective, rapid and high-throughput assay, which so far has only been widely used in clinical pathology for molecular diagnostic of diseases and patient genotyping. Application of HRM allowed significant reduction in the amount of expensive Sanger sequencing required for allele mining in plants. The method described here involved an investigation of total cDNA rather than genomic DNA, thus permitting the analyses of shorter (up to 300-bp) and fewer overlapping amplicons to cover the coding sequence. This strategy further reduced the allele mining costs. The sensitivity and accuracy of HRM for predicting genotypes carrying a wide range of nucleotide polymorphisms in eIF4E approached 100%. Results of the current study are promising and suggest that this method could also potentially be applied to the discovery of superior alleles controlling other important traits in barley as well in other model and crop plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Buckler ES, Gaut BS, McMullen MD (2006) Molecular and functional diversity of maize. Curr Opin Plant Biol 9:172–176

    Article  PubMed  CAS  Google Scholar 

  • Caldwell DG, McCallum N, Shaw P, Muehlbauer GJ, Marshall DF, Waugh R (2004) A structured mutant population for forward and reverse genetics in barley (Hordeum vulgare L.). Plant J 40:143–150

    Article  PubMed  CAS  Google Scholar 

  • Chagne D, Gasic K, Crowhurst RN, Han Y, Bassett HC, Bowatte DR, Lawrence TJ, Rikkerink EHA, Gardiner SE, Korban SS (2008) Development of a set of SNP markers present in expressed genes of the apple. Genomics 92:353–358

    Article  PubMed  CAS  Google Scholar 

  • Chateigner-Boutin AL, Small I (2007) A rapid high-throughput method for the detection and quantification of RNA editing based on high-resolution melting of amplicons. Nucleic Acids Res 35:e114. doi:10.1093/nar/gkm640

    Article  PubMed  Google Scholar 

  • Chou LS, Lyon E, Wittwer CT (2005) A comparison of high-resolution melting analysis with denaturing high-performance liquid chromatography for mutation scanning: cystic fibrosis transmembrane conductance regulator gene as a model. Am J Clin Pathol 124:330–338

    Article  PubMed  CAS  Google Scholar 

  • Comai L, Young K, Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Henikoff S (2004) Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. Plant J 37:778–786

    Article  PubMed  CAS  Google Scholar 

  • Croxford AE, Rogers T, Caligari PDS, Wilkinson MJ (2008) High-resolution melt analysis to identify and map sequence-tagged site anchor points onto linkage maps: a white lupin (Lupinus albus) map as an exemplar. New Phytol 180:594–607

    Article  PubMed  CAS  Google Scholar 

  • He S, Ohm H, Mackenzie S (1992) Detection of DNA sequence polymorphisms among wheat varieties. Theor Appl Genet 84:573–578

    Article  Google Scholar 

  • Herrmann MG, Durtschi JD, Bromley LK, Wittwer CT, Voelkerding KV (2006) Amplicon DNA melting analysis for mutation scanning and genotyping: cross-platform comparison of instruments and dyes. Clin Chem 52:494–503

    Article  PubMed  CAS  Google Scholar 

  • Herrmann MG, Durtschi JD, Wittwer CT, Voelkerding KV (2007) Expanded instrument comparison of amplicon DNA melting analysis for mutation scanning and genotyping. Clin Chem 53:1544–1548

    Article  PubMed  CAS  Google Scholar 

  • Kanyuka K, Druka A, Caldwell DG, Tymon A, McCallum N, Waugh R, Adams MJ (2005) Evidence that the recessive bymovirus resistance locus rym4 in barley corresponds to the eukaryotic translation initiation factor 4E gene. Mol Plant Pathol 6:449–458

    Article  CAS  Google Scholar 

  • Kaur N, Street K, Mackay M, Yahiaoui N, Keller B (2008) Molecular approaches for characterization and use of natural disease resistance in wheat. Eur J Plant Pathol 121:387–397

    Article  CAS  Google Scholar 

  • Lehmensiek A, Sutherland MW, McNamara RB (2008) The use of high resolution melting (HRM) to map single nucleotide polymorphism markers linked to a covered smut resistance gene in barley. Theor Appl Genet 117:721–728

    Article  PubMed  CAS  Google Scholar 

  • Mackay JF, Wright CD, Bonfiglioli RG (2008) A new approach to varietal identification in plants by microsatellite high resolution melting analysis: application to the verification of grapevine and olive cultivars. Plant Methods 4:8. doi:10.1186/1746-4811-4-8

    Article  PubMed  Google Scholar 

  • Mader E, Lukas B, Novak J (2008) A strategy to setup codominant microsatellite analysis for high-resolution-melting-curve-analysis (HRM). BMC Genet 9:69. doi:10.1186/1471-2156-9-69

    Article  PubMed  Google Scholar 

  • Martins-Lopes P, Zhang H, Koebner R (2001) Detection of single nucleotide mutations in wheat using single strand conformation polymorphism gels. Plant Mol Biol Rep 19:159–162

    Article  CAS  Google Scholar 

  • McCouch S (2004) Diversifying selection in plant breeding. PLoS Biol 2:e347. doi:10.1371/journal.pbio.0020347

    Article  PubMed  Google Scholar 

  • Reed GH, Wittwer CT (2004) Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clin Chem 50:1748–1754

    Article  PubMed  CAS  Google Scholar 

  • Reed GH, Kent JO, Wittwer CT (2007) High-resolution DNA melting analysis for simple and efficient molecular diagnostics. Pharmacogenomics 8:597–608

    Article  PubMed  CAS  Google Scholar 

  • Robaglia C, Caranta C (2006) Translation initiation factors: a weak link in plant RNA virus infection. Trends Plant Sci 11:40–45

    Article  PubMed  CAS  Google Scholar 

  • Satoh K, Doi K, Nagata T, Kishimoto N, Suzuki K, Otomo Y, Kawai J, Nakamura M, Hirozane-Kishikawa T, Kanagawa S, Arakawa T, Takahashi-Iida J, Murata M, Ninomiya N, Sasaki D, Fukuda S, Tagami M, Yamagata H, Kurita K, Kamiya K, Yamamoto M, Kikuta A, Bito T, Fujitsuka N, Ito K, Kanamori K, Choi I-R, Nagamura Y, Matsumoto T, Murakami K, Matsubara K, Carninci P, Hayashizaki Y, Kikuchi S (2007) Gene organization in rice revealed by full-length cDNA mapping and gene expression analysis through microarray. PLoS ONE 2:e1235. doi:10.1371/journal.pone.0001235

    Article  PubMed  Google Scholar 

  • Stein N, Perovic D, Kumlehn J, Pellio B, Stracke S, Streng S, Ordon F, Graner A (2005) The eukaryotic translation initiation factor 4E confers multiallelic recessive bymovirus resistance in Hordeum vulgare (L.). Plant J 42:912–922

    Article  PubMed  CAS  Google Scholar 

  • Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Young K, Taylor NE, Henikoff JG, Comai L, Henikoff S (2003) Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 13:524–530

    Article  PubMed  CAS  Google Scholar 

  • Triques K, Piednoir E, Dalmais M, Schmidt J, Le Signor C, Sharkey M, Caboche M, Sturbois B, Bendahmane A (2008) Mutation detection using ENDO1: application to disease diagnostics in humans and TILLING and Ecotilling in plants. BMC Mol Biol 9:42. doi:10.1186/1471-2199-9-42

    Article  PubMed  Google Scholar 

  • Turuspekov Y, Beecher B, Darlington Y, Bowman J, Blake TK, Giroux MJ (2008) Hardness locus sequence variation and endosperm texture in spring barley. Crop Sci 48:1007–1019

    Article  CAS  Google Scholar 

  • Varshney RK, Langridge P, Graner A (2007) Application of genomics to molecular breeding of wheat and barley. Adv Genet 58:121–155

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Allefs S, van den Berg RG, Vleeshouwers VGAA, van der Vossen EAG, Vosman B (2008) Allele mining in Solanum: conserved homologues of Rpi-blb1 are identified in Solanum stoloniferum. Theor Appl Genet 116:933–943

    Article  PubMed  CAS  Google Scholar 

  • Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ (2003) High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 49:853–860

    Article  PubMed  CAS  Google Scholar 

  • Wortman JR, Haas BJ, Hannick LI, Smith RK Jr, Maiti R, Ronning CM, Chan AP, Yu C, Ayele M, Whitelaw CA, White OR, Town CD (2003) Annotation of the Arabidopsis genome. Plant Physiol 132:461–468

    Article  PubMed  CAS  Google Scholar 

  • Wu S-B, Wirthensohn MG, Hunt P, Gibson JP, Sedgley N (2008) High resolution melting analysis of almond SNPs derived from ESTs. Theor Appl Genet 118:1–14

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Chris Bass and Thomas Baldwin for providing barley RNA samples and sequences of novel barley eIF4E alleles, Andrew L. Phillips, Antonio Hernández López and Carlos Bayon for technical advice on the HRM technology and the LightScanner® System, Richard Parkinson and other greenhouse staff for the production of excellent plant material, Harold E. Bockelman (National Small Grains Collection, USDA-ARS, Aberdeen, Idaho, USA) for providing numerous barley genotypes, and John A. Lucas for critical reading of the manuscript. This study was supported by the grant BBE0071981 from the Biotechnology and Biological Sciences Research Council (BBSRC) of the United Kingdom (“Innovation in Crop Science - Exploitation of Genetics for Sustainability” initiative). The LightScanner® System (Idaho Technology Inc.) utilising Hi-Res Melting™ was purchased from the BBSRC’s Tools and Resources Development Fund (TRDF) grant BBE0251611. Rothamsted Research receives grant-aided support from the BBSRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostya Kanyuka.

Additional information

Communicated by A. Schulman.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofinger, B.J., Jing, HC., Hammond-Kosack, K.E. et al. High-resolution melting analysis of cDNA-derived PCR amplicons for rapid and cost-effective identification of novel alleles in barley. Theor Appl Genet 119, 851–865 (2009). https://doi.org/10.1007/s00122-009-1094-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-1094-2

Keywords

Navigation