Skip to main content
Log in

Wx alleles in rice: relationship with apparent amylose content of starch and a possible role in rice domestication

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

The Waxy locus of rice is a highly polymorphic region embedded with microsatellite repeats in the 5′UTR leader intron 1 region, 23-bp duplication (wx motif) in exon 2, SNPs in exons 4, 6 and 10, p-Sine-r2 element in intron 1 and TnR-1 element in inton 13. Of the 80 polymorphic sites detected on the Wx gene, 24 are located in p-Sine-r2 and TnR-1 elements, revealing a higher substitution rate of bases in these two regions. All the cultivars with chalky endosperm had the 5′-AGTTATA-3′ haplotype in intron 1 and ‘A’ to ‘G’ substitution at +497 in exon 4. The AAC of starch from grains of all the accessions showed strong correlation (r=0.967) with GBSS-I activity in the grains. Based on the polymorphic sites of the Waxy locus and the GBSS-I activities, six allelic variants were defined which included wx, Wxop, Wxb, Wxin, Wxa2 and Wxa1, respectively, corresponded to glutinous, very low, low, intermediate, highII and highI amylose classes. Phylogenetic tree developed from alignment matrix of nucleotide sequences of the Waxy locus identified wx, Wxb and Wxin alleles with japonica lineage of Oryza sativa and the Wxop, Wxa2 and Wxa1 with indica lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  • Ayres N. M., McClung A. M., Larkin P. D., Bligh H. F. J., Jones C. A. and Park W. D. 1997 Microsatellites and a single nucleotide polymorphism differentiate apparent amylose classes in an extended pedigree of US rice germplasm. Theor. Appl. Genet. 94, 773–781.

    Article  CAS  Google Scholar 

  • Biselli C., Daniela C., Rosaria P., Alberto G., Paolo B., Simona U. et al. 2014 Improvement of marker-based predictability of apparent amylose content in japonica rice through GBSSI allele mining. Rice 7, https://doi.org/10.1186/1939-8433-7-1.

  • Biselli C., Volante A., Desiderio F., Tondelli A., Gianetti A., Finocchiaro F. et al. 2019 GWAS for starch-related parameters in japonica rice (Oryza sativa L.). Plants (Basel) 19, https://doi.org/10.3390/plants8080292.

  • Bligh H. F. J., Larkin P. D., Roach P. S., Jonea P. A., Fu H. and Park W. D. 1998 Use of alternate splicing sites in granule bound starch synthase mRNA from low amylose rice varieties. Plant Mol. Biol. 38, 407–415.

    Article  CAS  PubMed  Google Scholar 

  • Cai X. L., Wang Z. Y., Xing Y. Y., Zhang J. L. and Hong M. M. 1998 Aberrant splicing of intron 1 leads to the heterogeneous 5′ UTR and decreased expression of waxy gene in rice cultivars of intermediate amylose content. Plant J. 14, 459–465.

    Article  CAS  PubMed  Google Scholar 

  • Cheng J., Khan M. A., Qiu W. M., Li J., Zhou H., Zhang Q. et al. 2012 Diversification of genes encoding granule-bound starch synthase in monocots and dicots is marked by multiple genome-wide duplication events. PLoS One 7, e30088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chrungoo N. K. and Ayam G. D. 2016 Sequence polymorphism in the Waxy locus and its relationship with apparent amylose content of endosperm starch in cultivars of rice (Oryza sativa L.) from northeast India. Ind. J. Plant Physiol. 21, 556–568.

    Article  Google Scholar 

  • Dela Cruz N. and Khush G. S. 2000 Rice grain quality evaluation procedures. Aromatic Rice 3, 15–28.

    Google Scholar 

  • Dobo M., Ayres N., Walker G. and Park W. D. 2010 Polymorphism in the GBSS gene affects amylose content in US and European rice germplasm. J. Cereal Sci. 52, 450–456.

    Article  CAS  Google Scholar 

  • Felsenstein J. 1985 Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783–791.

    Article  PubMed  Google Scholar 

  • Fersht A., Wilkinson A., Carter P. and Winter G. 1985 Fine structure-activity analysis of mutations at position 51 of tyrosyl-tRNA synthetase. Biochemistry 24, 5858–5861.

    Article  CAS  PubMed  Google Scholar 

  • Ferdousa N., Eliasb S. M., Howladerb Z. H., Biswasc S. K., Rahmand SMd., Habibae K. K. and Seraj Z. I. 2018 Profiling Bangladeshi rice diversity based on grain size and amylose content using molecular markers. Curr. Plant Biol. 14, 56–65.

    Article  Google Scholar 

  • Frei M., Siddhuraju P. and Becker K. 2003 Studies on the in vitro starch digestibility and the glycemic index of six different indigenous rice cultivars from the Philippines. Food Chem. 83, 395–402.

    Article  CAS  Google Scholar 

  • Graham R. 2002 A proposal for IRRI to establish a grain quality and nutrition research center, report no. 44. Los Baños, Philippines.

  • Gross B. L. and Zhao Z. 2014 Archaeological and genetic insights into the origins of domesticated rice. Proc. Natl. Acad. Sci. USA 111, 6190–6197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanashiro I., Itoh K., Kuratomi Y., Yamazaki M., Igarashi T., Jun-ichi Matsugasako and Takeda Y. 2008 Granule-bound starch synthase I is responsible for biosynthesis of extra-long unit chains of amylopectin in rice. Plant Cell Physiol. 49, 925–933.

    Article  CAS  PubMed  Google Scholar 

  • Hirano H. Y., Mochizuki K., Umeda M., Ohtsubo H., Ohtsubo E. and Sano Y. 1994 Retrotranspositions of a plant SINE into the Wx locus during evolution. J. Mol. Evol. 38, 132–137.

    Article  CAS  PubMed  Google Scholar 

  • Hoai T. T. T., Matsusaka H., Toyosawa Y., Suu T. D., Satoh H. and Kumamaru T. 2014 Influence of single-nucleotide polymorphisms in the gene encoding granule-bound starch synthase I on amylose content in Vietnamese rice cultivars. Breed. Sci. 64, 142–148.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hossaina M. S., Singh A. K. and Fasih-uz-Zaman 2009 Cooking and eating characteristics of some newly identified inter sub-specific (indica/japonica) rice hybrids. Sci. Asia 35, 320.

  • Huang X., Kurata N., Wei X., Wang Z.-X., Wang A., Zhao Q. et al. 2012 A map of rice genome variation reveals the origin of cultivated rice. Nature 490, 497–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isshiki M., Morino K., Nakajima M., Okagaki R. J., Wessler S. R., Izawa T. and Shimamoto K. 1998 A naturally occurring functional allele of the rice waxy locus has GT to TT mutation at the 5′ splice site of the first intron. Plant J. 15, 133–138.

    Article  CAS  PubMed  Google Scholar 

  • Juliano B. O. 1971 A simplified assay for milled-rice amylose. Cereal Sci. Today 16, 334–338.

    Google Scholar 

  • Juliano B. O. 1992 Structure and function of the rice grain and its fractions. Cereal Foods World 37, 772–774.

    CAS  Google Scholar 

  • Kulichikhin K., Mukherjee S. and Ayele B. 2016 Extraction and assays of ADP-glucose pyrophosphorylase, soluble starch synthase and granule bound starch synthase from wheat (Triticum aestivum L.). Grains Bio. Protocol. 6, 1929.

    Google Scholar 

  • Larkin P. D. and Park W. D. 1999 Transcript accumulation and utilization of alternate and non-consensus splice sites in rice granule bound starch synthase is temperature-sensitive and controlled by a single nucleotide polymorphism. Plant Mol. Biol. 40, 719–727.

    Article  CAS  PubMed  Google Scholar 

  • Larkin P. D. and Park W. D. 2003 Association of waxy gene single nucleotide polymorphisms with starch characteristics in rice (Oryza sativa L.). Mol. Breed. 12, 335–339.

    Article  CAS  Google Scholar 

  • Laskowski R. A., McArthur M. W., Moss D. S. and Thornton J. M. 1993 PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283–291.

    Article  CAS  Google Scholar 

  • Li H., Prakash S., Nicholson T. M., Fitzgerald M. A. and Gilbert R. G. 2016 The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains. Food Chem. 196, 702–711.

    Article  CAS  PubMed  Google Scholar 

  • Li K., Bao J., Corke H. and Sun M. 2017 Association analysis of markers derived from starch biosynthesis related genes with starch physiochemical properties in the USDA rice mini-core collection. Front. Plant Sci. 3, 424.

    Google Scholar 

  • Liu L., Ma X., Liu S., Zhu C., Jiang L., Wang Y. et al. 2009 Identification and characterization of a novel Waxy allele from Yunnan rice landrace. Plant Mol. Biol. 71, 609–626.

    Article  CAS  PubMed  Google Scholar 

  • Liu P., Xei F., Li M., Liu X., Yu L., Halley P. and Chen L. 2011 Phase transitions of maize starches with different amylose contents in glycerol–water systems. Carbohydr. Polym. 85, 180–187.

    Article  CAS  Google Scholar 

  • Mikami I., Aikawa M., Hirano H. Y. and Sano Y. 1999 Altered tissue-specific expression at the Wx gene of the opaque mutants in rice. Euphytica 105, 91–99.

    Article  CAS  Google Scholar 

  • Muto C., Ishikawa R., Olsen K. M., Kawano K., Bounphanousay C., Matoh T. and Sato Y. I. 2016 Genetic diversity of the wx flanking region in rice landraces in northern Laos. Breed. Sci. 66, 580–590.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelson O. and Pan D. 1995 Starch synthesis in maize endosperms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 475–496.

    Article  CAS  Google Scholar 

  • Oka H. I. 1988 Origin of cultivated rice. Japan Scientific Societies Press, Tokyo.

    Google Scholar 

  • Olsen K. M., Caicedo A. L., Polato N., McClung A., McCouch S. and Purugganan M. D. 2006 Selection under domestication: Evidence for a sweep in the rice waxy genomic region. Genetics 173, 975–983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pace C. N., Hebert E. J., Bechert J., Shaw K., Urbanikova L., Scholtz J. M. and Sevcik J. 2001 Tyrosine hydrogen bonds make a large contribution to protein stability. J. Mol. Biol. 312, 393–404.

    Article  CAS  PubMed  Google Scholar 

  • Peroni F., Rocha T. and Franco C. 2006 Some structural and physicochemical characteristics of tuber and root starches. Food Sci. Tech. Intl. 12, 505–513.

    Article  CAS  Google Scholar 

  • Pollack R. M. 2004 Enzymatic mechanisms for catalysis of enolization: Ketosteroidisomerase. Bioorg. Chem. 32, 341–353.

    Article  CAS  PubMed  Google Scholar 

  • Prathepha P. 2008 Variation of the Waxy microsatellite allele and its relation to amylose content in wild rice (Oryza rufipogon Griff.). Asian J. Plant. Sci. 7, 156–216.

    Article  CAS  Google Scholar 

  • Sano Y. 1984 Differential regulation of waxy gene expression in rice endosperm. Theor. Appl. Genet. 68, 467–473.

    Article  CAS  PubMed  Google Scholar 

  • Sinervo B. and Svensson E. 2002 Correlational selection and the evolution of genomic architecture. Heredity 89, 329–338.

    Article  CAS  PubMed  Google Scholar 

  • Suwannaporn P., Pitiphunpong S. and Champangern S. 2007 Classification of rice amylose content by discriminant analysis of physicochemical properties. Starch 59, 171–177.

    Article  CAS  Google Scholar 

  • Takaoka M., Wantanabe S., Sassa H., Yamamori M., Nakamura T., Sasakuma T. and Hirano H. 1997 Structural characterization of high molecular weight starch granule-bound proteins in wheat (Triticum aestivum L.). J. Agri. Food Chem. 45, 2929–2934.

    Article  CAS  Google Scholar 

  • Tamura K., Stecher G., Peterson D., Filipski A. and Kumar S. 2013 MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng B., Zeng R., Wang Y., Liu Z., Zhang Z., Zhu H. et al. 2012 Detection of allelic variation at the Wx locus with single-segment substitution lines in rice (Oryza sativa L.). Mol. Breed. 30, 583–595.

    Article  Google Scholar 

  • Thongbam P. D., Tarentoshi Raychaudhury M., Durai A., Das S. P., Ramesh T. et al. 2012 Studies on grain and food quality traits of some indigenous rice cultivars of North-eastern Hill region of India. J. Agri. Sci. 4, 259–270.

    Google Scholar 

  • Tian Z., Qian Q., Liu Q., Yan M., Liu X., Yan C. et al. 2009 Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proc. Natl. Acad. Sci. USA 106, 21760–21765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaughan D. A., Morishima H. and Kadowaki K. 2003 Diversity in the Oryza genus. Curr. Opin. Plant Biol. 6, 139–146.

    Article  CAS  PubMed  Google Scholar 

  • Wanchana S., Toojinda T., Tragoonrung S. and Vanavichit A. 2003 Duplicated coding sequence in the Waxy allele of tropical glutinous rice (Oryza sativa L.). Plant Sci. 165, 1193–1199.

    Article  CAS  Google Scholar 

  • Wang Z. Y., Zheng F. Q., Shen G. Z., Gao J. P., Snustad D. P., Li M. G. et al. 1995 The amylose content in rice endosperm is related to the post-transcriptional regulation of the Waxy gene. Plant J. 7, 613–622.

    Article  CAS  PubMed  Google Scholar 

  • Whitt S. R., Wilson L. M., Tenaillon M. I., Gaut B. S. and Buckler E. S. 2002 Genetic diversity and selection in the maize starch pathway. Proc. Natl. Acad. Sci. USA 99, 12959–12962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson L. M., Whitt S. R., Ibanez A. M., Rocheford T. R., Goodman M. M. and Buckler E. S. 2004 Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell 16, 2719–2733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J. H., Cheng C., Tsuchimoto S., Ohtsubo H. and Ohtsubo E. 2007 Phylogenetic analysis of Oryza rufipogon strains and their relations to Oryza sativa strains by insertion polymorphism of rice SINEs. Genes Genet. Syst. 82, 217–229.

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka S., Nakamura I., Nakai H. and Sato Y. 2003 Dual origin of the cultivated rice based on molecular markers of newly collected annual and perennial strains of wild rice species, Oryza nivara and O. rufipogon. Genet. Resou. Crop Evol. 50, 529–538.

    Article  CAS  Google Scholar 

  • Yamanaka S., Nakamura I., Watanabe K. N. and Sato Y. 2004 Identification of SNPs in the Waxy gene among glutinous rice cultivars and their evolutionary significance during the domestication process of rice. Theor. Appl. Genet. 108, 1200–1204.

    Article  CAS  PubMed  Google Scholar 

  • Yang J., Wang J., Fan F.-J., Zhu J.-Y., Chen T., Wang C.-L. et al. 2013 Development of AS-PCR marker based on a key mutation confirmed by resequencing of Wx-mp in milky princess and its application in japonica soft rice (Oryza sativa L.) breeding. Plant Breed. 132, 595–603.

    Article  CAS  Google Scholar 

  • Zhang C., Zhu J., Chen S., Fan X., Li Q., Lu Y. et al. 2019 Wxlv, the ancestral allele of rice waxy gene. Mol. Plant 12, 1157–1166.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support received from Department of Biotechnology, Government of India under the Biotech Hub project against grant no. BT/04/NE/2009 is gratefully acknowledged. GAK gratefully acknowledges the receipt of financial support from University Grants Commission (UGC), Government of India in the form of a research fellowship under the Biotech Hub and National fellowship for Higher Education (ST) programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to NIKHIL K. CHRUNGOO.

Additional information

Corresponding editor: Durgadas P. Kasbekar

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KHARSHIING, G., CHRUNGOO, N.K. Wx alleles in rice: relationship with apparent amylose content of starch and a possible role in rice domestication. J Genet 100, 65 (2021). https://doi.org/10.1007/s12041-021-01311-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-021-01311-4

Keywords

Navigation