Skip to main content
Log in

Diversification of the Homoeologous Lr34 Sequences in Polyploid Wheat Species and Their Diploid Progenitors

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Allopolyploidization induces a multiple processes of genomic reorganization, including the structurally functional diversification of the homoeologous genes. An example of such diversification is the appearance of the Lr34 gene on chromosome 7D of bread wheat T. aestivum (BAD), the gene conferring durable, race non-specific protection against three fungal pathogens. In this study, we focused on the variability of a functionally critical region between exons 10–12 of Lr34 among diploid progenitors of wheat genomes and their respective polyploids. In the diploid A-genome species, two basic forms of the studied region have been revealed: (1) non-functional forms containing stop codons, or/and frameshifts (T. monococcum/T. urartu) and (2) forms with no such a mutations (T. boeoticum). The Lr34 sequence of T. urartu containing a TGA stop codon was inherited by the first tetraploid T. dicoccoides (BA), and then reorganized in some accessions of this species due to the insertion of an LTR retroelement in exon 10. Besides T. boeoticum, the second form of the Lr34 sequence is also characteristic of A. speltoides, which presumably donated this form to all polyploid descendants bearing B-genome. No differences were found between the D-genome-specific Lr34 sequences studied here and downloaded from databases, implying the highest level of conservation of the Lr34 predecessor throughout evolution. The sequence data were later used to construct phylograms, and apparent peculiarities in the evolution of the studied region of Lr34 genes discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adonina IG, Goncharov NP, Badaeva ED, Sergeeva EM, Petrash NV et al (2015) (GAA)n microsatellite as an indicator of the A genome reorganization during wheat evolution and domestication. Comp Cytogen 9:533–547

    Article  Google Scholar 

  • Bennetzen J (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 42:251–269

    Article  CAS  PubMed  Google Scholar 

  • Blake NK, Lehfeldt BR, Lavin M, Talbert LE (1999) Phylogenetic reconstruction based on low copy DNA sequence data in an allopolyploid: the B genome of wheat. Genome 42:351–360

    Article  CAS  PubMed  Google Scholar 

  • Chapman V, Miller TE, Riley R (1976) Equivalence of the A genome of bread wheat and that of T. urartu. Gen Res 27:69–76

    Article  Google Scholar 

  • Chauhan H, Boni R, Bucher R, Kuhn B, Buchmann G et al (2015) The wheat resistance gene Lr34 results in constitutive induction of multiple defense pathways in transgenic barley. Plant J 84:202–215

    Article  CAS  PubMed  Google Scholar 

  • Choulet F, Wicker T, Rustenholz C, Paux E, Salse J et al (2010) Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces. Plant Cell 22(6):1686–1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dakouri A, McCallum BD, Walichnowski AZ, Cloutier S (2010) Fine-mapping of the leaf rust Lr34 locus in Triticum aestivum (L.) and characterization of large germplasm collections support the ABC transporter as essential for gene function. Theor Appl Genet 121:373–384

    Article  CAS  PubMed  Google Scholar 

  • Dorofeev VF, Filatenko AA, Migushova EF, Udaczin RA et al (1979) Wheat. In: Dorofeev VF, Korovina ON (eds) Flora of cultivated plants, vol 1. Leningrad, St. Petersburg (In Russian)

    Google Scholar 

  • Dvorak J (1976) The relationship between the genome of Triticum urartu and the A and B genomes of Triticum aestivum. Can J Genet Cytol 18:371–377

    Article  Google Scholar 

  • Dvorak J, Zhang HB (1990) Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes. Proc Natl Acad Sci USA 87:9640–9644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dvorak J, McGuire PE, Cassidy B (1988) Apparent sources of the A genomes of wheats inferred from polymorphism in abundance and restriction fragment length of repeated nucleotide sequences. Genome 30:680–689

    Article  CAS  Google Scholar 

  • Dvorak JD, Terlizzi P, Zhang HB, Resta P (1993) The evolution of polyploid wheats: identification of the A genome donor species. Genome 36:21–31

    Article  CAS  PubMed  Google Scholar 

  • Dyck PL, Samborsk DJ, Anderson RG (1966) Inheritance of adult plant leaf rust resistance derived from common wheat varieties Exchange and Frontana. Can J Genet Cytol 8:665–671

    Article  Google Scholar 

  • Feldman M (2001) The origin of cultivated wheat, The World Wheat Book. Lavoisier Publishing, Paris, pp 3–58

    Google Scholar 

  • Feldman M, Levy A (2009) Genome evolution in allopolyploid wheat—a revolutionary reprogramming followed by gradual changes. J Genet Genomics 36:511–518

    Article  CAS  PubMed  Google Scholar 

  • Feldman M, Lupton FGH, Miller TE (1995) Wheats. In: Smartt J, Simmonds NW (eds) Evolution of crops. Longman Scientific, London, pp 184–192

    Google Scholar 

  • Gandilian PA (1972) On wild growing Triticum species of Armenian SSR. Bot Zhur 57:173–181 (in Russian)

    Google Scholar 

  • Huang S, Sirikhachornkit A, Su X, Faris J, Gill B et al (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci USA 99:8133–8138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson BL (1975) Identification of the apparent B-genome donor of wheat. Can J Genet Cytol 17:21–39

    Article  Google Scholar 

  • Johnson BL, Dhaliwal HS (1976) Reproductive isolation of T. boeoticum and T. urartu and the origin of the tetraploid wheats. Am J Bot 63:1088–1096

    Article  Google Scholar 

  • Kilian B, Ozkan H, Deusch O, Effgen S, Brandolini A et al (2007) Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Mol Biol Evol 24:217–227

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kiseleva AA, Shcherban AB, Leonova IN, Frenkel Z, Salina EA (2016) Identification of new heading date determinants in wheat 5B chromosome. BMC Plant Biol. doi:10.1186/s12870-015-0688-x

    PubMed  PubMed Central  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerto-Espino J et al (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Krattinger SG, Lagudah ES, Wicker T, Risk JM, Ashton AR et al (2011) Lr34 multi-pathogen resistance ABC transporter: molecular analysis of homoeologous and orthologous genes in hexaploid wheat and other grass species. Plant J 65:392–403

    Article  CAS  PubMed  Google Scholar 

  • Krattinger SG, Jordan DR, Mace ES, Raghavan C, Luo MC et al (2013) Recent emergence of the wheat Lr34 multi-pathogen resistance: insights from haplotype analysis in wheat, rice, sorghum and Aegilops tauschii. Theor Appl Genet 126:663–672

    Article  CAS  PubMed  Google Scholar 

  • Levy AA, Feldman M (2002) The impact of polyploidy on grass genome evolution. Plant Physiol 130:1587–1593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipka U, Fuchs R, Lipka V (2008) Arabidopsis non-host resistance to powdery mildews. Curr Opin Plant Biol 11(4):404–411

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci USA 101:12404–12410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcussen T, Sandve SR, Heier L, Spannagl M, Pfeifer M et al (2014) Ancient hybridizations among the ancestral genomes of bread wheat. Science 345(6194):1250092. doi:10.1126/science.1250092

    Article  PubMed  Google Scholar 

  • McIntosh RA (1992) Close genetic- linkage of genes conferring adult-plant resistance to leaf rust and strip rust in wheat. Plant Pathol 41:523–527

    Article  Google Scholar 

  • Ozkan H, Willcox G, Graner A, Salamini F, Kilian B (2011) Geographic distribution and domestication of wild emmer wheat (Triticum dicoccoides). Genet Resour Crop Evol 58:11–53

    Article  Google Scholar 

  • Rea PA (2007) Plant ATP-binding cassette transporters. Annu Rev Plant Biol 58:347–375

    Article  CAS  PubMed  Google Scholar 

  • Salina EA, Lim YK, Badaeva ED, Shcherban AB, Adonina IG et al (2006) Philogenetic reconstruction of Aegilops section Sitopsis and the evolution of tandem repeats in the diploids and derived wheat poliploids. Genome 49:1023–1035

    Article  CAS  PubMed  Google Scholar 

  • SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20:43–45

    Article  CAS  PubMed  Google Scholar 

  • Shcherban AB, Strygina KV, Salina EA (2015) VRN-1 gene- associated prerequisites of spring growth habit in wild tetraploid wheat T. dicoccoides and the diploid A genome species. BMC Plant Biol 15:94. doi:10.1186/s12870-015-0473-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Spielmeyer W, McIntosh RA, Kolmer J, Lagudah ES (2005) Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. Theor Appl Genet 111:731–735

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valkoun J, Waines JG Konopka J (May 1997) Current geographical distribution and habitat of wild wheats and barley. In: Proceedings of the Harlan symposium, pp 10–14. Aleppo

Download references

Acknowledgments

We are grateful to Dr. A. Böerner, Dr. A. Graner (Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany) and Dr. O. P. Mitrofanova for supplying seeds of wheat species. This work was supported by the Ministry of Education and Science of the Russian Federation (Agreement No. 14.604.21.0106 from 07.07.2014; identification number RFMEFI 60414X0106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Shcherban.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcherban, A.B., Kochieva, E.Z. & Salina, E.A. Diversification of the Homoeologous Lr34 Sequences in Polyploid Wheat Species and Their Diploid Progenitors. J Mol Evol 82, 291–302 (2016). https://doi.org/10.1007/s00239-016-9748-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-016-9748-6

Keywords

Navigation