Skip to main content
Log in

High-density Brassica oleracea linkage map: identification of useful new linkages

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

We constructed a 1,257-marker, high-density genetic map of Brassica oleracea spanning 703 cM in nine linkage groups, designated LG1–LG9. It was developed in an F2 segregating population of 143 individuals obtained by crossing double haploid plants of broccoli “Early-Big” and cauliflower “An-Nan Early”. These markers are randomly distributed throughout the map, which includes a total of 1,062 genomic SRAP markers, 155 cDNA SRAP markers, 26 SSR markers, 3 broccoli BAC end sequences and 11 known Brassica genes: BoGSL-ALK, BoGSL-ELONG, BoGSL-PROa, BoGSL-PROb, BoCS-lyase, BoGS-OH, BoCYP79F1, BoS-GT (glucosinolate pathway), BoDM1 (resistance to downy mildew), BoCALa, BoAP1a (inflorescence architecture). BoDM1 and BoGSL-ELONG are linked on LG 2 at 0.8 cM, making it possible to use the glucosinolate gene as a marker for the disease resistance gene. By QTL analysis, we found three segments involved in curd formation in cauliflower. The map was aligned to the C genome linkage groups and chromosomes of B. oleracea and B. napus, and anchored to the physical map of A. thaliana. This map adds over 1,000 new markers to Brassica molecular tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arus P, Orton T (1983) Inheritance and linkage relationships of isozyme loci in Brassica oleracea. J Hered 74:405–412

    CAS  Google Scholar 

  • Babula D, Kaczmarek M, Barakat A, Delseney M, Quiros CF, Sadowski J (2003) Chromosomal mapping of Brassica oleracea based on ESTs from Arabidopsis thaliana: complexity of the comparative map. Mol Genet Genomics 268:656–665

    PubMed  CAS  Google Scholar 

  • Bohuon EJR, Keith DJ, Parkin IAP, Sharpe AG, Lagercrantz U, Lydiate DJ (1996) Comparative genome of Brassica oleracea and Brassica napus. Theor Appl Genet 93:833–839

    Article  CAS  Google Scholar 

  • Gao M, Li GY, Yang B, McCombie WR, Quiros CF (2004) Comparative analysis of a Brassica BAC clone containing several major aliphatic glucosinolate genes with its corresponding Arabidopsis sequence. Genome 47:666–679

    Article  PubMed  CAS  Google Scholar 

  • Gao M, Li G, McCombie W R, Quiros CF (2005) Comparative analysis of a transposon-rich Brassica oleracea BAC clone with its corresponding sequence in A. thaliana. Theor Appl Genet 111:949–955

    Article  PubMed  CAS  Google Scholar 

  • Gao M, Li G, Potter D, McCombie W R, Quiros CF (2006) Comparative analysis of methylthioalkylmalate synthase (MAM) gene family and flanking DNA sequences in Brassica oleracea and A. thaliana. Plant Cell Rep 25:592–598

    Article  PubMed  CAS  Google Scholar 

  • Giovannelli JL, Farnham MW, Wang M (2002) Development of sequence characterized amplified region markers linked to downy mildew resistance in broccoli. J Am Soc Hortic Sci 127:597–601

    CAS  Google Scholar 

  • Haley SD, Afanador L , Kelly JD (1994) Selection for monogenic pest resistance traits with coupling- and repulsion-phase RAPD markers. Crop Sci 34:1061–1066

    Article  Google Scholar 

  • Heneen WK, Jorgensen RB (2001) Cytology, RAPD, and seed colour of progeny plants from Brassica rapa-alboglabra aneuploids and development of monosomic addition lines. Genome 44:1007–1021

    Article  PubMed  CAS  Google Scholar 

  • Howell EC, Barker GC, Jones GH, Kearsey MJ, King GJ (2002) Integration of the cytogenetic and genetic linkage maps of Brassica oleracea. Genetics 161:1225–1234

    PubMed  CAS  Google Scholar 

  • Hu J, Quiros CF (1991) Identification of broccoli and cauliflower cultivars with RAPD markers. Plant Cell Rep 10:505–511

    Article  Google Scholar 

  • Kowalski SP, Lan TH, Feldmann KA, Paterson AH (1994) Comparative mapping of Arabidopsis thaliana and Brassica oleracea chromosomes reveals islands of conserved organization. Genetics 138:499–510

    PubMed  CAS  Google Scholar 

  • Labate JA, Robertson LD, Baldo AM (2006) Inflorescence identity gene alleles are poor predictors of inflorescence type in broccoli and cauliflower. J Am Soc Hortic Sci

  • Lan TH, Del Monte TA, Reischmann KP, Hyman J, Kowalski S, McFerson J, Kresovich S, Paterson AH (2000) An EST-enriched comparative map of Brassica oleracea and Arabidopsis thaliana. Genome Res 10:776–788

    Article  PubMed  CAS  Google Scholar 

  • Lan TH, Paterson AH (2000) Comparative mapping of quantitative trait loci sculpting the curd of Brassica oleracea. Genetics 155:1927

    PubMed  CAS  Google Scholar 

  • Li G, Quiros CF (2001). Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461

    Article  CAS  Google Scholar 

  • Li G, Quiros CF (2002) Genetic analysis, expression and molecular characterization of BoGSL-ELONG, a major gene involved in the aliphatic glucosinolate pathway of Brassica species. Genetics 162:1937–1943

    PubMed  CAS  Google Scholar 

  • Li G, Gao M, Yang B Quiros CF (2003) Gene to gene alignment between the Brassica and Arabidopsis genomes by transcriptional mapping. Theor Appl Genet 107:168–180

    Article  PubMed  CAS  Google Scholar 

  • Li G, Quiros CF (2003) In planta side-chain glucosinolate modification in Arabidopsis by introduction of dioxygenase Brassica homolog BoGSL-ALK. Theor Appl Genet 106:1116–1121

    PubMed  CAS  Google Scholar 

  • Lowe AJ, Moule C, Trick M, Edwards KJ (2004) Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor Appl Genet 108:1103–1112

    Article  PubMed  CAS  Google Scholar 

  • Parkin IAP, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn T, Lydiate DJ (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    Article  PubMed  CAS  Google Scholar 

  • Parkin IAP, Sharpe AG, Lydiate DJ (2003) Patterns of genome duplication within the Brassica napus genome. Genome 46:291–303

    Article  PubMed  CAS  Google Scholar 

  • Piquemal J, Cinquin E, Couton F, et al. (2005) Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet 111:1514–1523

    Article  PubMed  CAS  Google Scholar 

  • Purugganan MD, Boyles AL, Suddith JI (2000) Variation and selection at the cauliflower floral homeotic gene accompanying the evolution of domesticated Brassica oleracea. Genetics. 155:855–862

    PubMed  CAS  Google Scholar 

  • Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet 114:67–80

    Article  PubMed  CAS  Google Scholar 

  • Quiros CF (2000) DNA-based marker maps of Brassica. In: Phillips RL, Vasil JK (eds) DNA-Based markers in Plants. Kluwer, Dordrecht

  • Quiros CF, Paterson AH (2004) Genome mapping and analysis in Brassica. In: Pua EC, Douglas CJ (eds) Biotechnology in Agriculture and Forestry 54:31–42

  • Sebastian RL, Howell EC, King GK, Marshall DF, Kearsey MJ (2000) An integrated AFLP and RFLP Brassica oleracea linkage map from two morphologically distinct double haploid mapping populations. Theor Appl Genet 100:75–81

    Article  CAS  Google Scholar 

  • Smith LB, King GJ (2000) The distribution of BoCAL-a alleles in Brassica oleracea is consistent with a genetic model for curd development and domestication of the cauliflower. Mol Plant Breed 6:603–613

    Article  Google Scholar 

  • Song K, Lu P, Tang K, Osborn TC (1995). Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci USA 92:7719–7723

    Article  PubMed  CAS  Google Scholar 

  • Sun Z, Wang Z, Tu J, Rahman M, Zhang J, Yu F, McVetty PBE, Li G (2007) An ultradense genetic recombination map for Brassica napus, consisting of 13335 SRAP markers Theor Appl Genet (in press)

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to Mr. Vincent D’Antonio and to Mrs. Fengliang Huang for their technical assistance. The project was supported by the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service, grant number CFQ # 2005-35301-15886, “Cloning and characterization of the major genes involved in the aliphatic glucosinolate pathway of Brassica crops”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Quiros.

Additional information

Communicated by F. Ordon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 382 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, M., Li, G., Yang, B. et al. High-density Brassica oleracea linkage map: identification of useful new linkages. Theor Appl Genet 115, 277–287 (2007). https://doi.org/10.1007/s00122-007-0568-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-007-0568-3

Keywords

Navigation