Skip to main content
Log in

The negative influence of N-mediated TMV resistance on yield in tobacco: linkage drag versus pleiotropy

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Resistance to tobacco mosaic virus (TMV) is controlled by the single dominant gene N in Nicotiana glutinosa L. This gene has been transferred to cultivated tobacco (N. tabacum L.) by interspecific hybridization and backcrossing, but has historically been associated with reduced yields and/or quality in flue-cured tobacco breeding materials. Past researchers have suggested the role of pleiotropy and/or linkage drag effects in this unfavorable relationship. Introduction of the cloned N gene into a TMV-susceptible tobacco genotype (cultivar ‘K326’) via plant transformation permitted investigation of the relative importance of these possibilities. On average, yield and cash return ($ ha−1) of 14 transgenic NN lines of K326 were significantly higher relative to an isoline of K326 carrying N introduced via interspecific hybridization and backcrossing. The negative effects of tissue culture-induced genetic variation confounded comparisons with the TMV-susceptible cultivar, K326, however. Backcrossing the original transgenic lines to non-tissue cultured K326 removed many of these unfavorable effects, and significantly improved their performance for yield and cash return. Comparisons of the 14 corresponding transgenic NN backcross-derived lines with K326 indicated that linkage drag is the main factor contributing to reduced yields in TMV-resistant flue-cured tobacco germplasm. On average, these transgenic lines outyielded the conventionally-developed TMV-resistant K326 isoline by 427 kg ha−1 (P < 0.05) and generated $1,365 ha−1 more (P < 0.05). Although transgenic tobacco cultivars are currently not commercially acceptable, breeding strategies designed to reduce the amount of N. glutinosa chromatin linked to N may increase the likelihood of developing high-yielding TMV-resistant flue-cured tobacco cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

TMV:

Tobacco mosaic virus

References

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Hen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab G, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter D, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagensis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • An G, Watson BD, Cheng CC (1986) Transformation of tobacco, tomato, potato, and Arabidopsis thaliana using a binary Ti vector system. Plant Physiol 81:301–305

    PubMed  CAS  Google Scholar 

  • Barro F, Barcelo P, Lazzeri PA, Shewry PR, Martin A, Ballesteros J (2002) Field evaluation and agronomic performance of transgenic wheat. Theor Appl Genet 105:980–984

    Article  PubMed  CAS  Google Scholar 

  • Bates GW (1990) Asymmetric hybridization between Nicotiana tabacum and N. repanda by donor recipient protoplast fusion: transfer of TMV resistance. Theor Appl Genet 80:481–487

    Article  Google Scholar 

  • Bechtold N, Pelletier G (1998) In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol Biol 82:259–266

    PubMed  CAS  Google Scholar 

  • Birch RG (1997) Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48:297–326

    Article  PubMed  CAS  Google Scholar 

  • Brandle JE, Miki BL (1993) Agronomic performance of sulfonylurea-resistant transgenic flue-cured tobacco grown under field conditions. Crop Sci 33:847–852

    Article  CAS  Google Scholar 

  • Bregitzer P, Halbert SE, Lemaux PG (1998) Somaclonal variation in the progeny of transgenic barley. Theor Appl Genet 96:421–425

    Article  Google Scholar 

  • Brown JKM (2002) Yield penalties of disease resistance in crops. Curr Opin Plant Biol 5:339–344

    Article  PubMed  CAS  Google Scholar 

  • Bui PT, Jenns AE, Schneider SM, Daub ME (1992) Resistance to tobacco mosaic virus and Meloidogyne arenaria in fusion hybrids between Nicotiana tabacum and an N. repanda × N. sylvestris hybrid. Phytopathology 82:1305–1310

    Google Scholar 

  • Burk LG, Gerstel DU, Wernsman EA (1979) Maternal haploids of Nicotiana tabacum L. from seed. Science 206:585

    Article  PubMed  CAS  Google Scholar 

  • Causse MA, Fulton TM, Cho YG, Ahn SN, Chunwongse J, Wu K, Xiao J, Yu Z, Ronald PC, Harrington SE, Second G, McCouch SR, Tanksley SD (1994) Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138:1251–1274

    PubMed  CAS  Google Scholar 

  • Chaplin JF, Mann TJ (1978) Evaluation of tobacco mosaic resistance factor transferred from burley to flue-cured tobacco. J Hered 69:175–178

    Google Scholar 

  • Chaplin JF, Matzinger DF, Mann TJ (1966) Influence of the homozygous and heterozygous mosaic-resistance factor on quantitative character of flue-cured tobacco. Tob Sci 10:81–84

    Google Scholar 

  • Dale PJ, McPartlan HC (1992) Field performance of transgenic potato plants compared with controls regenerated from tuber discs and shoot cuttings. Theor Appl Genet 84:585–591

    Article  Google Scholar 

  • Davis RE (1976) A combined automated procedure for the determination of reducing sugars and nicotine alkaloids in tobacco products using a new reducing sugar method. Tob Sci 20:139–144

    Google Scholar 

  • De Vries SE, Ferwerda MA, Loonen AEHM, Pijnacker LP, Feenstra WJ (1987) Chromosomes in somatic hybrids between Nicotiana plumbaginifolia and a monoploid potato. Theor Appl Genet 75:170–176

    Article  Google Scholar 

  • Donaldson PA, Bevis E, Pandeya R, Gleddie S (1995) Rare symmetric and asymmetric Nicotiana tabacum (+) N. megalosiphon somatic hybrids recovered by selection for nuclear-encoded resistance genes and in the absence of genome inactivation. Theor Appl Genet 91:747–755

    Article  CAS  Google Scholar 

  • Dudits D, Maroy E, Praznovszky T, Olah Z, Gyorgyey J, Cella R (1987) Transfer of resistance traits from carrot into tobacco by asymmetric somatic hybridization: regeneration of fertile plants. Proc Natl Acad Sci USA 84:8434–8438

    Article  PubMed  CAS  Google Scholar 

  • Elmore RW, Roeth FW, Nelson LA, Shapiro CA, Klein RN, Knezevic SZ, Martin A (2001) Glyphosate-resistant soybean cultivar yields compared with sister lines. Agron J 93:408–412

    Article  Google Scholar 

  • Evans DA, Flick CE, Jensen RA (1981) Disease resistance: incorporation into sexually incompatible somatic hybrids of the genus Nicotiana. Science 213:907–909

    Article  PubMed  CAS  Google Scholar 

  • Feldmann KA, Marks MD (1987) Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: a non tissue-culture approach. Mol Gen Genet 208:1–9

    Article  CAS  Google Scholar 

  • Feldmann KA, Marks MD, Christianson ML, Quatrano RS (1989) A dwarf mutant of Arabidopsis generated by T-DNA insertional mutagensis. Science 243:1351–1354

    Article  CAS  PubMed  Google Scholar 

  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87

    Google Scholar 

  • Ganal MW, Tanksley SD (1996) Recombination around the Tm2a and Mi resistance genes in different crosses of Lycopersicon peruvianum. Theor Appl Genet 92:101–108

    Article  CAS  Google Scholar 

  • Gerstel DU (1945) Inheritance in Nicotiana tabacum. XIX. Identification of the tabacum chromosome replaced by one from N. glutinosa in mosaic-resistant Holmes Samsoun tobacco. Genetics 30:448–454

    PubMed  CAS  Google Scholar 

  • Goodman RM, Hauptli H, Crossway A, Knauf VC (1987) Gene transfer in crop improvement. Science 236:48–54

    Article  CAS  PubMed  Google Scholar 

  • Goodspeed TH (1942) El tabaco y otras especies del genero Nicotiana. Bol Bac Agron Vet Buenos Aires No 22

  • Hadley HH, Openshaw SJ (1980) Interspecific and intergeneric hybridization. In: Fehr WR, Hadley HH (eds) Hybridization of crop plants. American Society of Agronomy, Madison, pp 33–159

    Google Scholar 

  • Hinnisdaels S, Bariller L, Mouras A, Sidorov V, Del-Favero J, Veuskens J, Negrutiu I, Jacobs M (1991) Highly asymmetric intergeneric nuclear hybrids between Nicotiana and Petunia: evidence for recombinogenic and translocation events in somatic hybrid plants after “gamma”-fusion. Theor Appl Genet 82:609–614

    Article  Google Scholar 

  • Holmes FO (1938) Inheritance of resistance to tobacco-mosaic disease in tobacco. Phytopathology 28:553–561

    Google Scholar 

  • Jain SM (2001) Tissue culture-derived variation in crop improvement. Euphytica 118:153–166

    Article  CAS  Google Scholar 

  • Jongedijk E, de Schutter AAJ, Stolte T, van den Elzen PJ, Cornelissen BJC (1992) Increased resistance to potato virus X and preservation of cultivar properties in transgenic potato under field conditions. Biotechnology 10:442–429

    Article  Google Scholar 

  • Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43:179–188

    Article  PubMed  CAS  Google Scholar 

  • Kasperbauer MA, Collins GB (1972) Reconstitution of diploids from leaf tissue of anther-derived haploids in tobacco. Crop Sci 12:98–101

    Article  Google Scholar 

  • Kisaka H, Kameya T (1994) Production of somatic hybrids between Daucus carota L. and Nicotiana tabacum. Theor Appl Genet 88:75–80

    Article  CAS  Google Scholar 

  • Koncz C, Nemeth K, Redei GP, Schell J (1992) T-DNA insertional mutagenesis in Arabidopsis. Plant Mol Biol 20:963–976

    Article  PubMed  CAS  Google Scholar 

  • Kostoff D (1948) Cytogenetics of Nicotiana tabacum var. Virii resistant to the common tobacco mosaic virus. Curr Sci 17:315–316

    Google Scholar 

  • Kostoff D, Georgieva R (1944) Resistance to tobacco mosaic virus. II. Inheritance of necrotic reactions and plant breeding value of the strains Nicotiana tabacum var. virii. Cent Agr Exp Contr Inst Sofia. Sofia, Bulgaria (English translation)

  • Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11:2283–2290

    Article  PubMed  CAS  Google Scholar 

  • Lanfermeijer FC, Jiang G, Ferwerda MA, Dijkhuis J, de Haan P, Yang R, Hille J (2004) The durable resistance gene Tm-2 2 from tomato confers resistance against ToMV in tobacco and preserves its viral specificity. Plant Sci 167:687–692

    Article  CAS  Google Scholar 

  • Larkin PJ, Snowcroft WR (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Article  Google Scholar 

  • Lee M, Phillips RL (1988) The chromosomal basis of somaclonal variation. Ann Rev Plant Physiol Plant Mol Biol 39:413–437

    Article  Google Scholar 

  • Legg PD, Litton CC, Collins GB (1981) Effects of the Nicotiana debneyi black root rot resistance factor on agronomic and chemical traits in burley tobacco. Theor Appl Genet 60:365–368

    Article  CAS  Google Scholar 

  • Lewis RS, Nicholson JS (2007) Aspects of the evolution of Nicotiana tabacum L. and the status of the United States Nicotiana germplasm collection. Genet Resour Crop Evol (in press)

  • Lewis RS, Milla SR, Levin JS (2005) Molecular and genetic characterization of Nicotiana glutinosa L. chromosome segments in tobacco mosaic virus-resistant tobacco accessions. Crop Sci 45:2355–2362

    Article  CAS  Google Scholar 

  • Liharska T, Koornneef M, van Wordragen M, van Kammen A, Zabel P (1996) Tomato chromosome 6: effect of alien chromosomal segments on recombination frequencies. Genome 39:485–491

    CAS  PubMed  Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD (1996) SAS System for mixed models. SAS Institute Inc., Cary

    Google Scholar 

  • Malnoe P, Farinelli L, Collet GF, Reust W (1994) Small-scale field test with transgenic potato, cv. Bintje, to test resistance to primary and secondary infections with potato virus Y. Plant Mol Biol 25:963–975

    Article  PubMed  CAS  Google Scholar 

  • McIntosh MS (1983) Analysis of combined experiments. Agron J 75:153–155

    Article  Google Scholar 

  • Messeguer R, Ganal MW, de Vicente MC, Young ND, Bolkan H, Tanksley SD (1991) High resolution RFLP map around the root-knot nematode resistance gene (Mi) in tomato. Theor Appl Genet 82:529–536

    Article  CAS  Google Scholar 

  • Oka H (1961) A breeding study on interspecific transfer of disease resistance in tobacco. Hatano Tobacco Expt St Bull 49 (Japanese with English summary)

  • Paterson AH, de Verna JW, Lanini B, Tanksley SD (1990) Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes in an interspecific cross of tomato. Genetics 124:735–742

    PubMed  CAS  Google Scholar 

  • Peschke VM, Phillips RL (1992) Genetic implications of somaclonal variation in plants. Adv Genet 30:41–75

    Article  CAS  Google Scholar 

  • Purrington CB (2000) Costs of resistance. Curr Opin Plant Biol 3:305–308

    Article  PubMed  CAS  Google Scholar 

  • Ramulu KS, Dijkhuis P, Rutgers E, Blaas J, Krens FA, Dons JJM, Colijn-Hooymans CM, Verhoeven HA (1996) Microprotoplast-mediated transfer of single specific chromosomes between sexually incompatible plants. Genome 39:921–933

    PubMed  CAS  Google Scholar 

  • Rogers SO, Bendich AJ (1985) Extraction of DNA from milligram amounts of fresh, herbarium, and mummified plant tissues. Plant Mol Biol 5:69–76

    Article  CAS  Google Scholar 

  • Rommens CMT, Salmeron JM, Oldroyd GED, Staskawicz BJ (1995) Intergeneric transfer and functional expression of the tomato resistance gene Pto. Plant Cell 7:1537–1544

    Article  PubMed  CAS  Google Scholar 

  • Rufty RC, Wernsman EA, Gooding GV (1987) Use of detached leaves to evaluate tobacco haploids and doubled haploids for resistance to tobacco mosaic virus, Meloidogyne incognita, and Pseudomonas syringae pv. tabaci. Phytopathology 77:60–62

    Google Scholar 

  • Sallaud C, Meynard D, van Boxtel J, Gay C, Bes M, Brizard JP, Larmande P, Ortega D, Raynal M, Portefaix M, Ouwerkerk PBF, Rueb S, Delseny M, Guiderdoni E (2003) Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics. Theor Appl Genet 106:1396–1408

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Smith WD, Fisher LR (2007) Variety information. In: 2007 Flue-cured tobacco information. North Carolina State University College of Agriculture and Life Sciences, pp 19–49

  • Spassova MI, Prins TW, Folkertsma RT, Klein-Lankhorst RM, Hille J, Goldbach RW, Prins M (2001) The tomato gene Sw5 is a member of the coiled coil, nucleotide binding, leucine-rich repeat class of plant resistance genes and confers resistance to TSWV in tobacco. Mol Breeding 7:151–161

    Article  CAS  Google Scholar 

  • Sproule A, Donaldson P, Dijak M, Bevis E, Pandeya R, Keller WA, Gleddie S (1991) Fertile somatic hybrids between transgenic Nicotiana tabacum and transgenic N. debneyi selected by dual antibiotic resistance. Theor Appl Genet 82:450–456

    Article  Google Scholar 

  • Stalker HT (1980) Utilization of wild species for crop improvement. Adv Agron 33:111–147

    Article  Google Scholar 

  • Stam P, Zeven C (1981) The theoretical proportion of the donor genome in near-isogenic lines of self-fertilizers bred by backcrossing. Euphytica 30:227–238

    Article  Google Scholar 

  • Tai TH, Dahlbeck D, Clark ET, Gajiwala P, Pasion R, Whalen MC, Stall RE, Staskawicz BJ (1999) Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc Natl Acad Sci USA 96:14153–14258

    Article  PubMed  CAS  Google Scholar 

  • Ternovsky MF (1941) Interspecific hybridization in tobacco and Makhorka (N. rustica) breeding. A.I. Mikoyan pan-Soviet Sci Res Inst Tob Indian Tob Ind Krasnodar Publ Krasnodar Publ 143:99–125

    Google Scholar 

  • Ternovsky MF (1945) Methods of breeding tobacco varieties resistant to tobacco mosaic and powdery mildew. A.I. Mikoyan pan-Soviet Sci Res Inst Tob Indian Tob Ind Krasnodar Publ 143:126–141

    Google Scholar 

  • Valleau WD (1952) Breeding tobacco for disease resistance. Econ Bot 6:69–102

    Google Scholar 

  • Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C, Baker B (1994) The product of the tobacco mosaic virus resistance gene N: similarity to Toll and the interleukin-1 receptor. Cell 78:1101–1115

    Article  PubMed  CAS  Google Scholar 

  • Whitham S, McCormick S, Baker B (1996) The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato. Proc Natl Acad Sci USA 93:8776–8781

    Article  PubMed  CAS  Google Scholar 

  • Whitty EB, Hill RA, Christie R, Young JB, Lindbo JA, Dougherty WG (1994) Field assessment of virus resistance in transgenic Nicotiana tabacum cv. Burley 49 plants expressing tobacco etch virus sequences. Tob Sci 38:30–34

    Google Scholar 

  • Xu D, Collins GB, Hunt AG, Nielsen MT (1999) Agronomic performance of transgenic burley tobaccos expressing TVMV or AMV coat protein genes with and without virus challenges. Crop Sci 39:1195–1202

    Article  Google Scholar 

  • Young ND, Tanksley SD (1989) RFLP analysis of the size of chromosomal segments retained around the Tm-2 locus of tomato during backcross breeding. Theor Appl Genet 77:353–359

    Article  CAS  Google Scholar 

  • Zeven AC, Knott DR, Johnson R (1983) Investigation of linkage drag in near isogenic lines of wheat by testing for seedling reaction to races of stem rust, leaf rust and yellow rust. Euphytica 32:319–327

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Barbara Baker, USDA-ARS, for her cooperation in providing us with the N construct pTG34. Lori Whittock was supported by a graduate assistantship provided by Profigen. The authors are also grateful to Philip Morris USA for their support of the overall tobacco breeding and genetics research program at NCSU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Lewis.

Additional information

Communicated by D. A. Lightfoot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, R.S., Linger, L.R., Wolff, M.F. et al. The negative influence of N-mediated TMV resistance on yield in tobacco: linkage drag versus pleiotropy. Theor Appl Genet 115, 169–178 (2007). https://doi.org/10.1007/s00122-007-0552-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-007-0552-y

Keywords

Navigation