Skip to main content
Log in

Heterosis, transmission genetics, and selection for increased growth rate in a N. tabacum × synthetic tobacco cross

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Cultivated tobacco (Nicotiana tabacum L.) is a classic amphidiploid, and hybrids between this cultivated species and closely related diploid Nicotiana relatives often exhibit heterotic effects for growth rate and yield. Crosses between N. tabacum and synthetic tobaccos, 4x(Nicotiana sylvestris × Nicotiana otophora) or 4x(N. sylvestris × Nicotiana tomentosiformis), may provide superior routes for genome-wide introgression from diploid relatives and allow increased potential to capitalize on heterotic effects in tobacco. Significant levels of mid-parent heterosis were observed for yield and growth rate in F1 hybrids between synthetic tobaccos and a standard tobacco cultivar. Microsatellite marker genotyping of an F2 population derived from a K326 × [4x(N. sylvestris × N. otophora)] cross was carried out to preliminarily investigate the relative importance of different types of gene action on observed heterosis in the original interspecific cross. Results suggested a role for both partial dominance and overdominance. Marker genotyping also indicated an overall reduced level of recombination in the N. tabacum × synthetic tobacco cross relative to a N. tabacum × N. tabacum cross but no evidence of genomic regions with severely restricted levels of recombination. Results suggest that populations derived from N. tabacum × synthetic tobacco crosses may be more efficient for introgressing germplasm from diploid relatives, as compared to populations derived from crosses between N. tabacum and diploid forms where preferential pairing between N. tabacum homologues can reduce the potential for introgression of alien chromatin. Such materials may be useful as sources of favorable alleles influencing quantitative characters in tobacco.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aoki S, Ito M (2000) Molecular phylogeny of Nicotiana (Solanaceae) based on the nucleotide sequence of the matK gene. Plant Biol 2:316–324

    Article  CAS  Google Scholar 

  • Aycock MK (1980) Hybridization among Maryland, burley and flue-cured tobaccos. Tob Sci 24:109–113

    Google Scholar 

  • Bindler G, Plieske J, Bakaher N, Gunduz I, Ivanov N, van der Hoeven R, Ganal M, Donini P (2011) A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development. Theor Appl Genet 123:219–230

    Article  PubMed  PubMed Central  Google Scholar 

  • Bland MM, Matzinger DF, Levings CS (1985) Comparison of the mitochondrial genome of Nicotiana tabacum with its progenitor species. Theor Appl Genet 69:535–541

    Article  CAS  PubMed  Google Scholar 

  • Bos I, Caligari P (2010) Selection methods in plant breeding, 2nd edn. Springer, Dordrecht

    Google Scholar 

  • Burk LG (1973) Partial self-fertility in a theoretical amphiploid progenitor of N. tabacum. J Hered 64:348–350

    Article  Google Scholar 

  • Burk LG, Chaplin JF (1979) Hybridization. In: Durbin RD (ed) Nicotiana: procedures for experimental use, USDA Tech Bull No 1586, pp 23–27

    Google Scholar 

  • Chaplin JF (1966) Comparative performance of F1 flue cured tobacco hybrids and their parents. I. Agronomic and quality characteristics. Tob Sci 10:126–130

    Google Scholar 

  • Chaplin JF, Mann TJ (1961) Interspecific hybridization, gene transfer and chromosome substitution in Nicotiana. NC Agric Exp Stat Bull No 145:1–31

    Google Scholar 

  • Clarkson JJ, Lim KY, Kovarik A, Chase MW, Knapp S, Leitch AR (2005) Long-term genomic diploidization in allopolyploid Nicotiana section Repandae (Solanaceae). New Phytol 168:241–252

    Article  CAS  PubMed  Google Scholar 

  • Dean CE (1974) Heterosis, inbreeding depression, and combining ability in diallel crosses of cigar-wrapper tobacco. Crop Sci 14:482–482

    Article  Google Scholar 

  • Drake K, Lewis RS (2013) An introgressed genomic region confers resistance to Phytophthora nicotianae in cultivated tobacco. Crop Sci 53:1366–1374

    Article  CAS  Google Scholar 

  • Edwards MD, Stuber CW, Wendel JF (1987) Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics 116:113–125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Esch E, Horn R (2008) Variability of recombination rates in higher plants. Progress in Botany 69:37–60

    Article  CAS  Google Scholar 

  • Fehr WR (1987) Heritability. In: Principles of cultivar development: theory and techniques (Vol. 1). Macmillan Publishing Company. New York, pp. 95–105

  • Fridman E (2015) Consequences of hybridization and heterozygosity on plant vigor on phenotypic stability. Plant Sci 232:35–40

    Article  CAS  PubMed  Google Scholar 

  • Gerstel GU (1960) Segregation in new allopolyploids of Nicotiana. I. Comparison of 6x (N. tabacum × tomentosiformis) and 6x (N. tabacum × otophora). Genetics 45:1723–1734

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gerstel DU, Sisson VA (1995) Tobacco. In: Smartt J, Simmonds NW (eds) Evolution of crop plants, 2nd edn. John Wiley & Sons, Inc., New York, pp 458–463

    Google Scholar 

  • Goodspeed TH (1954) The genus Nicotiana. Chronica Botancia, Waltham

    Google Scholar 

  • Holland JB (1998) Computer note EPISTACY: a SAS program for detecting two-locus epistatic interactions using genetic marker information. J Hered 89:374–375

    Article  Google Scholar 

  • Huang X, Yang S, Gong J, Zhao Y, Feng Q, Gong H, Li W, Zhan Q, Cheng B, Xia J, Chen N, Hao Z, Liu K, Zhu C, Huang T, Zhao Q, Zhang L, Fan D, Zhou C, Lu Y, Weng Q, Wang Z-X, Li J, Han B (2015) Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nat Commun 6:6258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson ES, Wolff MF, Wernsman EA, Rufty RC (2002) Marker-assisted selection for resistance to black shank disease in tobacco. Plant Dis 86:1303–1309

    Article  CAS  Google Scholar 

  • Kenton A, Parokonny AS, Gleba YY, Bennett MD (1993) Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics. Mol Gen Genet 240:159–169

    Article  CAS  PubMed  Google Scholar 

  • Kitamura S, Inoue M, Shikazono N, Tanaka A (2001) Relationships among Nicotiana species revealed by the 5S rDNA spacer sequence and fluorescence in situ hybridization. Theor Appl Genet 103:678–686

    Article  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugenics 12:172–175

    Article  Google Scholar 

  • Kovarik A, Dadejova M, Lim KY, Chase MW, Clarkson JJ, Knapp S, Leitch AR (2008) Evolution of rDNA in Nicotiana allopolyploids: a potential link between rDNA homogenization and epigenetics. Ann Bot 101:815–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legg PD, Collins GB, Litton CC (1970) Heterosis and combining ability in diallel crosses of burley tobacco, Nicotiana tabacum L. Crop Sci 10:705–707

    Article  Google Scholar 

  • Lewis RS (2011) Nicotiana. In: Kole C (ed) Wild crop relatives: genomic and breeding resources—plantation and ornamental crops. Springer, Berlin, pp 185–208

    Chapter  Google Scholar 

  • Lewis RS, Nicholson JS (2007) Aspects of the evolution of Nicotiana tabacum L. and the status of the United States Nicotiana Germplasm Collection. Genet Resour Crop Evol 54:727–740

    Article  Google Scholar 

  • Li ZK, Luo LJ, Mei HW, Wang DL, Shu QY, Tabien R, Zhong DB, Ying CS, Stansel JW, Khush GS, Paterson AH (2001) Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I Biomass and grain yield. Genetics 158:1737–1753

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liharska T, Koornneef M, van Wordragen M, van Kammen A, Zabel P (1996) Tomato chromosome 6: effect of alien chromosomal segments on recombination frequencies. Genome 39:485–491

    Article  CAS  PubMed  Google Scholar 

  • Lim KY, Kovarik A, Matyasek R, Chase MW, Clarkson J, Grandbastien MA, Leitch AR (2007) Sequence of events leading to near complete genome turnover in allopolyploid Nicotiana within five million years. New Phytol 175:756–763

    Article  CAS  PubMed  Google Scholar 

  • Lim KY, Matyasek R, Lichtenstein CP, Leitch AR (2000) Molecular and cytogenetic analyses and phylogenetic studies in Nicotiana section Tomentosae. Chromosoma 109:245–258

    Article  CAS  PubMed  Google Scholar 

  • Lim KY, Skalicka K, Koukalova B, Volkov RA, Matyasek R, Hemleben V, Leitch AR, Kovarik A (2004) Dynamic changes in the distribution of a satellite homologous to intergenic 26-18S rDNA spacer in the evolution of Nicotiana. Genetics 166:1935–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo LJ, Li ZK, Mei HW, Shu QY, Tabien R, Zhong DB, Ying CS, Stansel JW, Khush GS, Paterson AH (2001) Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II Grain yield components. Genetics 158:1755–1771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mann TJ, Gerstel DU, Apple JL (1963) The role of interspecific hybridization in tobacco disease control. In: Proceedings of 3rd World Tobacco Scientific Congress, Mardon Printers, Salisbury, Southern Rhodesia pp. 201–205

  • Mann TJ, Weybrew JA (1958a) Manifestation of hybrid vigor in crosses between flue-cured varieties of N. tabacum and N. sylvestris. Tob Sci 2:120–125

    Google Scholar 

  • Mann TJ, Weybrew JA (1958b) Inheritance of alkaloids in hybrids between flue-cured tobacco and related amphidiploids. Tob Sci 2:29–34

    Google Scholar 

  • Mann TJ, Weybrew JA, Matzinger DF, Hall JL (1964) Inheritance of the conversion of nicotine to nornicotine in varieties of Nicotiana tabacum L. and related amphidiploids. Crop Sci 4:349–353

    Article  CAS  Google Scholar 

  • Marani A, Sachs Y (1966) Heterosis and combining ability in a diallel cross among nine varieties of Oriental tobacco. Crop Sci 6:19–22

    Article  Google Scholar 

  • Matzinger DF, Mann TJ (1962) Hybrids among flue-cured varieties of Nicotiana tabacum in the F1 and F2 generations. Tob Sci 6:125–132

    Google Scholar 

  • Matzinger DF, Wernsman EA (1967) Genetic diversity and heterosis in Nicotiana I. interspecific crosses. Der Züchter 37:188–191

    Google Scholar 

  • Matzinger DF, Wernsman EA (1968) Genetic diversity and heterosis in Nicotiana. II. Oriental × flue-cured variety crosses. Tob Sci 12:177–180

    Google Scholar 

  • Matzinger DF, Wernsman EA, Ross HF (1971) Diallel crosses among burley varieties of Nicotiana tabacum L. in the F1 and F2 generations. Crop Sci 11:275–279

    Article  Google Scholar 

  • McIntosh MS (1983) Analysis of combined experiments. Agron J 75:153–155

    Article  Google Scholar 

  • Moon HS, Nicholson JS, Heineman A, Lion K, van der Hoeven R, Hayes AJ, Lewis RS (2009) Changes in genetic diversity of US flue-cured tobacco germplasm over seven decades of cultivar development. Crop Sci 49:498–502

    Article  Google Scholar 

  • Murad L, Lim KY, Christopodulou V, Matyasek R, Lichtenstein CP, Kovarik A, Leitch AR (2002) The origin of tobacco’s ‘T’ genome is traced to a particular lineage within Nicotiana tomentosiformis (Solanaceae). Am J Bot 89:921–928

    Article  CAS  PubMed  Google Scholar 

  • North Carolina Cooperative Extension (2014) Flue-cured tobacco guide. North Carolina State University, Raleigh

    Google Scholar 

  • Olmstead RG, Palmer JD (1991) Chloroplast DNA and systematics of the Solanaceae. In: Hawkes JG, Lester RN, Nee M, Estrada N (eds) Solanaceae III: taxonomy, chemistry, evolution. Royal Botanic Gardens, Kew, pp 161–168

    Google Scholar 

  • Oupadissakoon S, Wernsman EA (1977) Agronomic performance and nature of gene effects in progenitor species derived genotypes of tobacco. Crop Sci 17:843–847

    Article  Google Scholar 

  • Ozkan H, Levy AA, Feldman M (2001) Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell 13:1735–1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petit M, Lim KY, Julio E, Poncet C, de Borne FD, Kovarik A, Grandbastien M, Mhiri C (2007) Differential impact of retrotransposon populations on the genome of allotetraploid tobacco (Nicotiana tabacum). Mol Genet Genomics 278:1–15

    Article  CAS  PubMed  Google Scholar 

  • Reed SM (1991) Cytogenetic evolution and aneuploidy in Nicotiana. In: Tsuchiya T, Gupta PK (eds) Chromosome engineering in plants: genetics, breeding, evolution, part B. Elsevier, Amsterdam, pp 483–505

    Google Scholar 

  • Riechers DE, Timko MP (1999) Structure and expression of the gene family encoding putrescine N-methyltransferase in Nicotiana tabacum: new clues to the evolutionary origin of cultivated tobacco. Plant Mol Biol 41:387–401

    Article  CAS  PubMed  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnol 18:233–234

    Article  CAS  Google Scholar 

  • Semel Y, Nissenbaum J, Menda N, Zinder M, Krieger U, Issman N, Pleban T, Lippman Z, Gur A, Zamir D (2006) Overdominant quantitative trait loci for yield and fitness in tomato. Proc Nat Acad Sci USA 103:12981–12986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sierro N, Battey JND, Ouadi S, Bakaher N, Bovet L, Willig A, Goepfert S, Peitsch MC, Ivanov NV (2014) The tobacco genome sequence and its comparison with those of tomato and potato. Nat Commun 5:3833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skalicka K, Lim KY, Matyasek R, Koukalova B, Leitch AR, Kovarik A (2003) Rapid evolution of parental rDNA in a synthetic tobacco allotetraploid line. Am J Bot 90:988–996

    Article  CAS  PubMed  Google Scholar 

  • Skalicka K, Lim KY, Matyasek R, Matzke M, Leitch AR, Kovarik A (2005) Preferential elimination of repeated DNA sequences from the paternal, N. tomentosiformis genome donor of a synthetic, allotetraploid tobacco. New Phytol 166:291–303

    Article  CAS  PubMed  Google Scholar 

  • Song KM, Lu P, Tang KL, Osborne TC (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Nat Acad Sci USA 92:7719–7723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stalder KJ, Saxton AM (2004) Estimation of genetic parameters. In: Saxton AM (ed) Genetic analysis of complex traits using SAS. SAS Institute Inc., Cary, pp 35–54

    Google Scholar 

  • Van Ooijen JW (2006) JoinMap® 4.0, software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V., Wageningen, the Netherlands

  • Vandenberg P, Matzinger DF (1970) Genetic diversity and heterosis in Nicotiana. III. Crosses among tobacco introductions and flue-cured varieties. Crop Sci 10:437–440

    Article  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wernsman EA, Matzinger DF (1966) A breeding procedure for the utilization of heterosis in tobacco-related species hybrids. Crop Sci 6:298–300

    Article  Google Scholar 

  • Wernsman EA, Matzinger DF, Mann TJ (1976) Use of progenitor species germplasm for the improvement of a cultivated allotetraploid. Crop Sci 16:800–803

    Article  CAS  Google Scholar 

  • Wilkinson CA, Rufty RC (1990) Diallel analysis of crosses among United States and European burley tobacco cultivars. Tob Sci 34:15–18

    Google Scholar 

  • Xiao J, Li J, Yuan L, Tanksley SD (1995) Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics 140:745–754

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yukawa M, Tsudzuki T, Sugiura M (2006) The chloroplast genome of Nicotiana sylvestris and Nicotiana tomentosiformis: complete sequencing confirms that the Nicotiana sylvestris progenitor is the maternal genome donor of Nicotiana tabacum. Mol Genet Genomics 275:367–373

    Article  CAS  PubMed  Google Scholar 

  • Zhou G, Chen Y, Yao W, Zhang C, Xie W, Hua J, Xing Y, Xiao J, Zhang Q (2012) Genetic composition of yield heterosis in an elite rice hybrid. Proc Nat Acad Sci USA 109:15847–15852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

WGH performed the research, helped to analyze the data, and helped draft the manuscript. RSL designed the research, helped to analyze the data, and wrote the manuscript.

Corresponding author

Correspondence to Ramsey S. Lewis.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Key Message: Tobacco (N. tabacum) hybrids with synthetic tobaccos, 4x(N. sylvestris × N. otophora) or 4x(N. sylvestris × N. tomentosiformis), exhibit heterotic effects for yield and growth rate. Genetic recombination is suppressed in such crosses, but germplasm exchange on all chromosomes is relatively free-flowing. Synthetic tobaccos offer a superior system for introgressing genetic diversity into N. tabacum from closely related diploid relatives.

Electronic supplementary material

Fig. S1

(PDF 25 kb)

Fig. S2

(PDF 25 kb)

Table S1

(XLSX 13 kb)

Table S2

(XLSX 13 kb)

Table S3

(XLSX 33 kb)

Table S4

(XLSX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hancock, W.G., Lewis, R.S. Heterosis, transmission genetics, and selection for increased growth rate in a N. tabacum × synthetic tobacco cross. Mol Breeding 37, 53 (2017). https://doi.org/10.1007/s11032-017-0654-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-017-0654-4

Keywords

Navigation