Skip to main content
Log in

Assessment of the importance of α-amylase inhibitor-2 in bruchid resistance of wild common bean

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Both α-amylase inhibitor-2 (αAI-2) and arcelin have been implicated in resistance of wild common bean (Phaseolus vulgaris L.) to the Mexican bean weevil (Zabrotes subfasciatus Boheman). Near isogenic lines (NILs) for arcelin 1–5 were generated by backcrossing wild common bean accessions with a cultivated variety. Whereas seeds of a wild accession (G12953) containing both αAI-2 and arcelin 4 were completely resistant to Z. subfasciatus, those of the corresponding NIL were susceptible to infestation, suggesting that the principal determinant of resistance was lost during backcrossing. Three independent lines of transgenic azuki bean [Vigna angularis (Willd.) Ohwi and Ohashi] expressing αAI-2 accumulated high levels of this protein in seeds. The expression of αAI-2 in these lines conferred protection against the azuki bean weevil (Callosobruchus chinensis L.), likely through inhibition of larval digestive α-amylase. However, although the seed content of αAI-2 in these transgenic lines was similar to that in a wild accession of common bean (G12953), it did not confer a level of resistance to Z. subfasciatus similar to that of the wild accession. These results suggest that αAI-2 alone does not provide a high level of resistance to Z. subfasciatus. However, αAI-2 is an effective insecticidal protein with a spectrum of activity distinct from that of αAI-1, and it may prove beneficial in genetic engineering of insect resistance in legumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acosta-Gallegos JA, Quintero C, Vargas J, Toro O, Tohme J, Cardona C (1998) A new variant of arcelin in wild common bean, Phaseolus vulgaris L., from southern Mexico. Genet Resour Crop Evol 45:235–242

    Article  Google Scholar 

  • Andreas JR, Yandell BS, Bliss FA (1986) Bean arcelin 1. Inheritance of a novel seed protein of Phaseolus vulgaris L. and its effect on seed composition. Theor Appl Genet 72:123–128

    Article  CAS  Google Scholar 

  • Bernfeld P (1955) Amylases, α- and β-. Methods Enzymol 1:149–158

    Article  CAS  Google Scholar 

  • Cardona C, Kornegay J, Posso CE, Morales F, Ramirez H (1990) Comparative value of four arcelin variants in the development of dry bean lines resistant to the Mexican bean weevil. Entomol Exp Appl 56:197–206

    Article  Google Scholar 

  • Chen R, Tsuda S, Matsui K, Fukuchi-Mizutani M, Ochiai M, Shimizu S, Sakuradani E, Aoki T, Imaizumi R, Ayabe S, Tanaka Y (2005) Production of γ-linolenic acid in Lotus japonicus and Vigna angularis by expression of the Δ6-fatty-acid desaturase gene isolated from Mortierella alpina. Plant Sci 169:599–605

    Article  CAS  Google Scholar 

  • Chrispeels MJ, Raikhel NV (1991) Lectins, lectin genes, and their role in plant defense. Plant Cell 3:1–9

    Article  PubMed  CAS  Google Scholar 

  • Duke-Ras A, Hookyaas PJJ (1995) Electroporation of Agrobacterium tumefaciens. In: Nickloff JA (ed) Plant cell electroporation and electrofusion protocols. Humana, Totowa, NJ, pp 63–72

    Chapter  Google Scholar 

  • Fory LF, Finardi-Filho F, Quintero CM, Osborn TC, Cardona C, Chrispeels MJ, Mayer JE (1996) α-Amylase inhibitor in resistance of common beans to the Mexican bean weevil and the bean weevil (Coleoptera: Bruchidae). J Econ Entomol 89:204–210

    CAS  Google Scholar 

  • Goossens A, Quintero C, Dillen W, Rycke RD, Valor JF, Clercq JD, Montagu MV, Cardona C, Angenon G (2000) Analysis of bruchid resistance in the wild common bean accession G02771: no evidence for insecticidal activity of arcelin 5. J Exp Bot 51:1229–1236

    Article  PubMed  CAS  Google Scholar 

  • Hanafy MS, Rahman SM, Khalafalla MM, El-Shemy HA, Nakamoto Y, Ishimoto M, Wakasa K (2006) Accumulation of free tryptophan in azuki bean (Vigna angularis) induced by expression of a gene (OASA1D) for a modified α subunit of rice anthranilate synthase. Plant Sci 171:670–676

    Article  CAS  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgen Res 2:208–218

    Article  CAS  Google Scholar 

  • Ishimoto M, Kitamura K (1989) Growth inhibitory effects of an α-amylase inhibitor from kidney bean, Phaseolus vulgaris (L.), on three species of bruchids (Coleoptera: Bruchidae). Appl Entomol Zool 24:281–286

    Google Scholar 

  • Ishimoto M, Kitamura K (1991) Effects of absence of seed α-amylase inhibitor on the growth inhibitory activity to azuki bean weevil (Callosobruchus chinensis) in common bean (Phaseolus vulgaris L.). Jpn J Breed 41:231–240

    CAS  Google Scholar 

  • Ishimoto M, Suzuki K, Iwanaga M, Kikuchi F, Kitamura K (1995) Variation of seed α-amylase inhibitors in the common bean. Theor Appl Genet 90:762–766

    Article  Google Scholar 

  • Ishimoto M, Sato T, Chrispeels MJ, Kitamura K (1996) Bruchid resistance of transgenic azuki bean expressing seed α-amylase inhibitor of common bean. Entomol Exp Appl 79:309–315

    Article  CAS  Google Scholar 

  • Ishimoto M, Yamada T, Kaga A (1999) Insecticidal activity of an α-amylase inhibitor-like protein resembling a putative precursor of α-amylase inhibitor in the common bean, Phaseolus vulgaris L. Biochim Biophys Acta 1432:104–112

    PubMed  CAS  Google Scholar 

  • Kornegay J, Cardona C, Posso CE (1993) Inheritance of resistance to the Mexican bean weevil in common bean, determined by bioassay and biochemical tests. Crop Sci 33:589–594

    Article  CAS  Google Scholar 

  • Lioi L, Bollini R (1989) Identification of a new arcelin variant in wild bean seeds. Annu Rep Bean Improv Coop 32:28

    Google Scholar 

  • Minney BHP, Gatehouse AMR, Dobie P, Dendy J, Cardona C, Gatehouse JA (1990) Biochemical basis of seed resistance to Zabrotes subfasciatus (bean weevil) in Phaseolus vulgaris (common bean); a mechanism for arcelin toxicity. J Insect Physiol 36:757–767

    Article  CAS  Google Scholar 

  • Mirkov TE, Wahlstrom JM, Hagiwara K, Finardi-Filho F, Kjemtrup S, Chrispeels MJ (1994) Evolutionary relationships among proteins in the phytohemagglutinin-arcelin-α-amylase inhibitor family of the common bean and its relatives. Plant Mol Biol 26:1103–1113

    Article  PubMed  CAS  Google Scholar 

  • Morton RL, Schroeder HE, Bateman KS, Chrispeels MJ, Armstrong E, Higgins TJV (2000) Bean α-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. Proc Natl Acad Sci USA 97:3820–3825

    Article  PubMed  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed  CAS  Google Scholar 

  • Nakaguchi T, Arakawa T, Philo JS, Wen J, Ishimoto M, Yamaguchi H (1997) Structural characterization of an α-amylase inhibitor from a wild common bean (Phaseolus vulgaris): insight into the common structural features of leguminous α-amylase inhibitors. J Biochem (Tokyo) 121:350–354

    CAS  Google Scholar 

  • Nishizawa K, Maruyama K, Satoh R, Fuchikami Y, Higasa T, Utsumi S (2003) A C-terminal sequence of soybean β-conglycinin α′ subunit acts as a vacuolar sorting determinant in seed cells. Plant J 34:647–659

    Article  PubMed  CAS  Google Scholar 

  • Nodari RO, Tsai SM, Gilbertson RL, Gepts P (1993) Towards an integrated linkage map of common bean. 2. Development of an RFLP-based linkage map. Theor Appl Genet 85:513–520

    Article  CAS  Google Scholar 

  • Osborn TC, Blake T, Gepts P, Bliss FA (1986) Bean arcelin. 2. Genetic variation, inheritance and linkage relationships of a novel seed protein of Phaseolus vulgaris L. Theor Appl Genet 71:847–855

    Article  CAS  Google Scholar 

  • Osborn TC, Alexander DC, Sun SSM, Cardona C, Bliss FA (1988) Insecticidal activity and lectin homology of arcelin seed protein. Science 240:207–210

    Article  CAS  Google Scholar 

  • Pueyo JJ, Hunt DC, Chrispeels MJ (1993) Activation of bean (Phaseolus vulgaris) α-amylase inhibitor requires proteolytic processing of the proprotein. Plant Physiol 101:1341–1348

    Article  PubMed  CAS  Google Scholar 

  • Santino A, Valsasina B, Lioi L, Vitale A, Bollini R (1991) Bean (Phaseolus vulgaris L.) seed lectins: a novel electrophoretic variant of arcelin. Plant Physiol 10:7–11

    Google Scholar 

  • Sarmah BK, Moore A, Tate W, Molvig L, Morton RL, Rees DP, Chiaiese P, Chrispeels MJ, Tabe LM, Higgins TJV (2004) Transgenic chickpea seeds expressing high levels of a bean α-amylase inhibitor. Mol Breed 14:73–82

    Article  CAS  Google Scholar 

  • Schoonhoven AV, Cardona C, Valor J (1983) Resistance to the bean weevil and the Mexican bean weevil (Coleoptera: Bruchidae) in noncultivated common bean accessions. J Econ Entomol 76:1255–1259

    Google Scholar 

  • Schroeder HE, Gollash S, Moore A, Craig S, Hardie DC, Chrispeels MJ, Spencer D, Higgins TVJ (1995) Bean α-amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas (Pisum sativum L.). Plant Physiol 107:1233–1239

    PubMed  CAS  Google Scholar 

  • Shade RE, Schroeder HE, Pueyo JJ, Tabe LM, Murdock LL, Higgins TJV, Chrispeels MJ (1994) Transgenic pea seeds expressing the α-amylase inhibitor of the common bean are resistant to bruchid beetles. Biotechnology (NY) 12:793–796

    Article  CAS  Google Scholar 

  • Silva CP, Terra WR, Xavier-Filho J, Grossi de Sà MF, Lopes AR, Pontes EG (1999) Digestion in larvae of Callosobruchus maculatus and Zabrotes subfasciatus (Coleoptera: Bruchidae) with emphasis on α-amylases and oligosaccharidases. Insect Biochem Mol Biol 29:355–366

    Article  CAS  Google Scholar 

  • Silva CP, Terra WR, Grossi de Sa MF, Samuels RI, Isejima EM, Bifano TD, Almeida JS (2001) Induction of digestive α-amylases in larvae of Zabrotes subfasciatus (Coleoptera: Bruchidae) in response to ingestion of common bean α-amylase inhibitor 1. J Insect Physiol 47:1283–1290

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Ishimoto M, Kikuchi F, Kitamura K (1993) Growth inhibitory effect of an α-amylase inhibitor from the wild common bean resistant to the Mexican bean weevil (Zabrotes subfasciatus). Jpn J Breed 43:257–265

    CAS  Google Scholar 

  • Suzuki K, Ishimoto M, Kitamura K (1994) cDNA sequence and deduced primary structure of an α-amylase inhibitor from a bruchid-resistant wild common bean. Biochim Biophys Acta 1206:289–291

    PubMed  CAS  Google Scholar 

  • Suzuki K, Ishimoto M, Iwanaga M, Kikuchi F, Kitamura K (1995) Inheritance of seed α-amylase inhibitor in the common bean and genetic relationship to arcelin. Theor Appl Genet 90:762–766

    Article  CAS  Google Scholar 

  • Yamada T, Hattroi K, Ishimoto M (2001a) Purification and characterization of two α-amylase inhibitors from seeds of tepary bean (Phaseolus acutifolius A. Gray). Phytochemistry 58:59–66

    Article  CAS  Google Scholar 

  • Yamada T, Teraishi M, Hattori K, Ishimoto M (2001b) Transformation of azuki bean by Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 64:47–54

    Article  CAS  Google Scholar 

  • Yamada T, Moriyama R, Hattori K, Ishimoto M (2005) Isolation of two α-amylase inhibitor genes of tepary bean (Phaseolus acutifolius A.Gray) and their functional characterization in genetically engineered azuki bean. Plant Sci 169:502–511

    Article  CAS  Google Scholar 

  • Young NM, Thibault P, Watson DC, Chrispeels MJ (1999) Post-translational processing of two α-amylase inhibitors and an arcelin from the common bean, Phaseolus vulgaris. FEBS Lett 446:203–206

    Article  PubMed  CAS  Google Scholar 

  • Zambre M, Goossens A, Cardona C, Van Montagu M, Terryn N, Angenon G (2005) A reproducible genetic transformation system for cultivated Phaseolus acutifolius (tepary bean) and its use to assess the role of arcelins in resistance to the Mexican bean weevil. Theor Appl Genet 110:914–924

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Project for Development of Innovative Transgenic Plants of the Ministry of Agriculture, Forestry, and Fisheries of Japan. We thank Koichi Fujii (University of Tsukuba) for providing colonies of Z. subfasciatus, Elizabeth E. Hood (ProdiGene, College Station, TX) for providing A. tumefaciens strain EHA105, and Yumi Nakamoto for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masao Ishimoto.

Additional information

Communicated by F. J. Muehlbauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishizawa, K., Teraishi, M., Utsumi, S. et al. Assessment of the importance of α-amylase inhibitor-2 in bruchid resistance of wild common bean. Theor Appl Genet 114, 755–764 (2007). https://doi.org/10.1007/s00122-006-0476-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-006-0476-y

Keywords

Navigation