Skip to main content
Log in

Development of crop-specific transposable element (SINE) markers for studying gene flow from oilseed rape to wild radish

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The screening of wild populations for evidence of gene flow from a crop to a wild related species requires the unambiguous detection of crop genes within the genome of the wild species, taking into account the intraspecific variability of each species. If the crop and wild relatives share a common ancestor, as is the case for the Brassica crops and their wild relatives (subtribe Brassiceae), the species-specific markers needed to make this unambiguous detection are difficult to identify. In the model oilseed rape (Brassica napus, AACC, 2n=38)-wild radish (Raphanus raphanistrum, RrRr, 2n=18) system, we utilized the presence or absence of a short-interspersed element (SINE) at a given locus to develop oilseed rape-specific markers, as SINE insertions are irreversible. By means of sequence-specific amplified polymorphism (SINE-SSAP) reactions, we identified and cloned 67 bands specific to the oilseed rape genome and absent from that of wild radish. Forty-seven PCR-specific markers were developed from three combinations of primers anchored either in (1) the 5′- and 3′-genomic sequences flanking the SINE, (2) the 5′-flanking and SINE internal sequences or (3) the SINE internal and flanking 3′-sequences. Seventeen markers were monomorphic whatever the oilseed rape varieties tested, whereas 30 revealed polymorphism and behaved either as dominant (17) or co-dominant (13) markers. Polymorphic markers were mapped on 19 genomic regions assigned to ten linkage groups. The markers developed will be efficient tools to trace the occurrence and frequency of introgressions of oilseed rape genomic region within wild radish populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baranger A, Chèvre AM, Eber F, Renard M (1995) Effect of oilseed rape genotype on the spontaneous hybridization rate with a weedy species: an assessment of transgene dispersal. Theor Appl Genet 91:956–963

    Article  CAS  Google Scholar 

  • Batzer MA, Stoneking M, Alegria-Hartman M, Bazan H, Kass DH, Shaikh TH, Novick GE, Ioannou PA, Scheer WD, Herrera RJ, Deininger PL (1994) African origin of human-specific polymorphic Alu insertions. Proc Natl Acad Sci USA 91:12288–12292

    CAS  PubMed  Google Scholar 

  • Capy P, Bazin C, Higuet D, Langin T (1998) Dynamics and evolution of transposable elements. Springer RG Landes, Austin

    Google Scholar 

  • Cheng C, Motohashi R, Tsuchimoto S, Fukuta Y, Ohtsubo H, Ohtsubo E (2003) Polyphyletic origin of cultivated rice: based on the interspersion pattern of SINEs. Mol Biol Evol 20:67–75

    Article  CAS  PubMed  Google Scholar 

  • Chèvre AM, Eber F, Darmency H, Fleury A, Picault H, Letanneur JC, Renard M (2000) Assessment of interspecific hybridization between transgenic oilseed rape and wild radish under normal agronomic conditions. Theor Appl Genet 100:1233–1239

    Article  Google Scholar 

  • Chèvre AM, Ammitzboll H, Breckling B, Dietz-Pfeilstetter A, Eber F, Fargue A, Gomez-Campo C, Jenczewski E, Jorgensen R, Lavigne C, Meier MS, den Nijs H, Pascher K, Seguin-Swartz G, Sweet J, Stewart CN Jr, Warwick S (2004) A review on interspecific gene flow from oilseed rape to wild relatives. In: Den Nuijs HCM, Bartsch D, Sweet J (eds) Introgression from genetically modified plants into wild relatives. CABI Publ, Wallingford, pp 235–251

    Google Scholar 

  • Cook J, Tristem M (1997) SINEs of the times–transposable elements as clade markers for their hosts. Trends Ecol Evol 12:295–297

    Article  Google Scholar 

  • Darmency H, Lefol E, Fleury A (1998) Spontaneous hybridization between oilseed rape and wild radish. Mol Ecol 7:1467–1473

    Article  Google Scholar 

  • Delourme R, Foisset N, Horvais R, Barret P, Champagne G, Cheung WY, Landry BS, Renard M (1998) Characterisation of the radish introgression carrying the Rfo restorer gene for the Ogu-INRA cytoplasmic male sterility in rapeseed (Brassica napus L). Theor Appl Genet 97:129–134

    Article  CAS  Google Scholar 

  • Deragon JM, Landry BS, Pelissier T, Tutois S, Tourmente S, Picard G (1994) An analysis of retroposition in plants based on a family of SINEs from Brassica napus. J Mol Evol 39:378–386

    Article  CAS  PubMed  Google Scholar 

  • Deragon JM, Gilbert N, Rouquet L, Lenoir A, Arnaud P, Picard G (1996) A transcriptional analysis of the S1Bn (Brassica napus) family of SINE retroposons. Plant Mol Biol 32:869–878

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Eber F, Chèvre AM, Baranger A, Vallée P, Tanguy X, Renard M (1994) Spontaneous hybridization between a male-sterile oilseed rape and two weeds. Theor Appl Genet 88:362–368

    Article  Google Scholar 

  • Ellis TH, Poyser SJ, Knox MR, Vershinin AV, Ambrose MJ (1998) Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea. Mol Gen Genet 260:9–19

    Article  CAS  PubMed  Google Scholar 

  • Fourmann M, Barret P, Froger N, Baron C, Charlot F, Delourme R, Brunel D (2002) From Arabidopsis thaliana to Brassica napus: development of amplified concensus genetic markers (ACGM) for construction of a gene map. Theor Appl Genet 105:1196–1206

    Article  CAS  PubMed  Google Scholar 

  • Gepts P, Papa R (2003) Possible effects of (trans)gene flow from crops on the genetic diversity from landraces and wild relatives. Environ Biosafety Res 2:89–103

    PubMed  Google Scholar 

  • James C (2004) Global status of commercialized Biotech/GM Crops:2004. ISAAA Briefs 32

  • Jenczewski E, Ronfort J, Chèvre AM (2003) Crop-to-wild gene flow, introgression and possible fitness effects of transgenes. Environ Biosafety Res 2:9–24

    PubMed  Google Scholar 

  • Jurka J, Klonowski P (1996) Integration of retroposable elements in mammals: selection of target sites. J Mol Evol 43:685–689

    CAS  PubMed  Google Scholar 

  • Kerlan MC, Chèvre AM, Eber F (1993) Interspecific hybrids between a transgenic rapeseed (Brassica napus) and related species: cytological characterization and detection of the transgene. Genome 36:1099–1106

    Google Scholar 

  • Lenoir A, Cournoyer B, Warwick S, Picard G, Deragon JM (1997) Evolution of SINE S1 retroposons in Cruciferae plant species. Mol Biol Evol 14:934–941

    CAS  PubMed  Google Scholar 

  • Lenoir A, Pélissier T, Bousquet-Antonelli C, Deragon JM (2005) Comparative evolution history of SINEs in Arabidopsis thaliana and Brassica oleracea: Evidence for a high rate of SINE loss. Cytogenet Cell Genet 110 (in press)

    Google Scholar 

  • Lincoln S, Daly M, Lander E (1992) Constructing genetic linkage maps with mapmaker/exp 3.0: a tutorial and reference manual, 3rd edn. Whitehead Institute Technical Report, Whitehead Technical Institute, Cambridge, Mass.

  • Lombard V, Delourme R (2001) A consensus linkage map for rapeseed (Brassica napus L): construction and integration of three individual maps from DH populations. Theor Appl Genet 103:491–507

    Article  CAS  Google Scholar 

  • Murata S, Takasaki N, Saitoh M, Okada N (1993) Determination of the phylogenetic relationships among Pacific salmonids by using short interspersed elements (SINEs) as temporal landmarks of evolution. Proc Natl Acad Sci USA 90:6995–6999

    CAS  PubMed  Google Scholar 

  • Okada N (1991) SINEs. Curr Opin Genet Dev 1:498–504

    CAS  PubMed  Google Scholar 

  • Parkin IAP, Sharpe AG, Keith DJ, Lydiate DJ (1995) Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome 38:1122–1131

    CAS  Google Scholar 

  • Purugganan MD, Wessler SR (1995) Transposon signatures: species-specific molecular markers that utilize a class of multiple-copy nuclear DNA. Mol Ecol 4:265–269

    CAS  PubMed  Google Scholar 

  • Rieger MA, Potter TD, Preston C, Powles SB (2001) Hybridisation between Brassica napus L and Raphanus raphanistrum L under agronomic field conditions. Theor Appl Genet 103:555–560

    CAS  Google Scholar 

  • Salem AH, Kilroy GE, Watkins WS, Jorde LB, Batzer MA (2003) Recently integrated Alu elements and human genomic diversity. Mol Biol Evol 20:1349–1361

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning, 3rd edn. Cold Spring Harbor Laboratory Press, Plainview

    Google Scholar 

  • Shedlock AM, Okada N (2000) SINE insertions: powerful tools for molecular systematics. Bioessays 22:148–160

    Article  CAS  PubMed  Google Scholar 

  • Shimamura M, Yasue H, Ohshima K, Abe H, Kato H, Kishiro T, Goto M, Munechika I, Okada N (1997) Molecular evidence from retroposons that whales form a clade within even-toed ungulates. Nature 388:666–670

    CAS  PubMed  Google Scholar 

  • Song KT, Osborn C, Williams PH (1988) Brassica taxonomy based on nuclear restriction fragment length polymorphism (RFLPs). 1. Genome evolution of diploid and amphidiploid species. Theor Appl Genet 75:784–794

    Article  CAS  Google Scholar 

  • Tatout C, Lavie L, Deragon JM (1998) Similar target site selection occurs in integration of plant and mammalian retroposons. J Mol Evol 47:463–470

    CAS  PubMed  Google Scholar 

  • Tatout C, Warwick SI, Lenoir A, Deragon JM (1999) SINE insertion as clade markers for wild Cruciferae species. Mol Biol Evol 16:1614–1621

    CAS  Google Scholar 

  • Udall J, Quijada P, Osborn TC (2005) Detection of chromosomal rearrangements derived from homoeologous recombination in four mapping populations of Brassica napus L. Genetics 169:967–979

    CAS  PubMed  Google Scholar 

  • Warwick SI, Black LD (1991) Molecular systematics of Brassica and allied genera (subtribe Brassicinae, Brassiceae)—chloroplast genome and cytodeme congruence. Theor Appl Genet 82:81–92

    Article  CAS  Google Scholar 

  • Warwick SI, Black LD (1993) Molecular relationships in subtribe Brassicinae (Cruciferae, tribe Brassiceae). Can J Bot 71:906–918

    CAS  Google Scholar 

  • Warwick SI, Simard MJ, Légère A, Beckie HJ, Braun L, Zhu B, Mason P, Séguin-Swartz G, Stewart JCN (2003) Hybridization between transgenic Brassica napus L and its wild relatives: B rapa L, Raphanus raphanistrum L, Sinapis arvensis L, and Erucastrum gallicum (Willd) OE Schulz. Theor Appl Genet 3:528–539

    Article  Google Scholar 

  • Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas BB, Powell W (1997) Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253:687–694

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by a post-doc grant of the National Institute of Agronomic Research and was funded by the French Research Ministry (Contract no. C002001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Chèvre.

Additional information

Communicated by C. Möllers

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prieto, J.L., Pouilly, N., Jenczewski, E. et al. Development of crop-specific transposable element (SINE) markers for studying gene flow from oilseed rape to wild radish. Theor Appl Genet 111, 446–455 (2005). https://doi.org/10.1007/s00122-005-2017-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-2017-5

Keywords

Navigation