Skip to main content
Log in

Dynamisierung der Osteosynthese

Zeitpunkt und Methoden

Dynamization of fracture fixation

Timing and methods

  • Leitthema
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Die Dynamisierung von Osteosynthesen ist ein häufig eingesetztes Verfahren, um die Frakturheilung zu beschleunigen. Der Begriff der Dynamisierung wird jedoch für verschiedene Methoden der Osteosyntheseveränderung während des Knochenheilungsvorganges benutzt. Die Dynamisierung durch Entfernung von Verriegelungsschrauben bei der intramedullären Marknagelung wird am häufigsten durchgeführt. Dadurch kann es zu einer Teleskopbewegung zwischen Marknagel und Röhrenknochen kommen, die zum Schließen möglicher Frakturspalten und zur Kompression der Frakturflächen führt. Experimentelle und klinische Studien haben gezeigt, dass dies in einer Beschleunigung der Frakturheilung resultieren kann. Speziell bei größeren Frakturspalten und -formen, die eine Abstützung der Fragmente erlauben, kann dieses Vorgehen sinnvoll sein. Ein weiteres Dynamisierungsverfahren ist die Flexibilisierung der Osteosynthese während des Frakturheilungsverlaufes. Dieses Vorgehen erfolgt überwiegend bei der Fixateur-externe-Osteosynthese; hier wird durch eine teilweise Entfernung von Stabilisationselementen am Fixateur externe die Flexibilität der Osteosynthese erhöht. Für dieses Verfahren werden gute Studienergebnisse berichtet, wenn die Dynamisierung in der späten Heilungsphase vorgenommen wird. Bei einer ausreichenden Kallusbildung können Kallusüberbrückung und -umbau dadurch beschleunigt werden. Für das umgekehrte Vorgehen einer Osteosynthese, die bewusst flexibel gewählt und dann nach einer gewissen Zeit versteift wird, wurden keine positiven Effekte auf die Knochenheilung beobachtet. Eine stabile Osteosynthese von Anfang an sollte das Ziel sein. Bei Vorliegen einer zu flexiblen Frakturfixation sollte die Osteosynthese so bald wie möglich stabilisiert werden.

Abstract

The dynamization of fracture fixation is a frequently used method to improve the fracture healing process; however, the term dynamization is used for different methods of altering the fixation of fractures during the bone healing process. The dynamization of intramedullary nail fixation by removing the interlocking screws is the most frequently applied method. This method can cause a telescopic movement between the nail and tubular bone that closes gaps in bony continuity and potentially compresses the fracture fragments. Experimental and clinical studies showed that this dynamization can accelerate the bone healing process. In particular dynamization may improve the outcome for fractures with residual fracture gaps following reduction but which allows support of the fragments. An alternative dynamization method involves decreasing the stiffness of the fracture fixation during the healing process. This method is used mainly with external fixation. In this procedure, stabilizing elements of the fixator are removed at some time during the treatment leading to greater flexibility of the fixation. Good results are reported for this method when the dynamization is performed in the late phase of the fracture healing process. If sufficient callus formation has taken place, callus bridging and maturation can be achieved. For reverse dynamization, which starts with a flexible fixation and is later stabilized, no significant advantages could be shown. The aim of fracture treatment should be stable fixation from the beginning. If the fracture fixation is unstable, it should be stabilized as soon as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Claes L (2017) Mechanobiology of fracture healing. Unfallchirurg 120(1):13

    Article  CAS  PubMed  Google Scholar 

  2. Johnson KD (1985) Indications, instrumentation, and experience with locked tibial nails. Orthopedics 8(11):1377–1383

    CAS  PubMed  Google Scholar 

  3. Basumallick MN, Bandopadhyay A (2002) Effect of dynamization in open interlocking nailing of femoral fractures. A prospective randomized comparative study of 50 cases with a 2-year follow-up. Acta Orthop Belg 68(1):42–48

    CAS  PubMed  Google Scholar 

  4. Foxworthy M, Pringle RM (1995) Dynamization timing and its effect on bone healing when using the Orthofix Dynamic Axial Fixator. Injury 26(2):117–119

    Article  CAS  PubMed  Google Scholar 

  5. Kempf I, Grosse A, Beck G (1985) Closed locked intramedullary nailing. J Bone Joint Surg Am 67:709–720

    Article  CAS  PubMed  Google Scholar 

  6. Klemm KW, Börner M (1986) Interlocking nailing of complex fractures of the femur and tibia. Clin Orthop 212:89–100

    Google Scholar 

  7. Acker JH, Murphy C, D’Ambrosia R (1985) Treatment of fractures of the femur with the Grosse-Kempf rod. Orthopedics 8(11):1393–1401

    CAS  PubMed  Google Scholar 

  8. Brumback RJ et al (1988) Intramedullary nailing of femoral shaft fractures. Part II: fracture-healing with static interlocking fixation. J Bone Joint Surg Am 70(10):1453–1462

    Article  CAS  PubMed  Google Scholar 

  9. Wiss DA et al (1986) Comminuted and rotationally unstable fractures of the femur treated with an interlocking nail. Clin Orthop Relat Res 21(2):35–47

    Google Scholar 

  10. Vecsei V, Haupl J (1989) The value of dynamic adjustment in locking intramedullary nailing. Aktuelle Traumatol 19(4):162–168

    CAS  PubMed  Google Scholar 

  11. Melendez EM, Colon C (1989) Treatment of open tibial fractures with the Orthofix fixator. Clin Orthop Relat Res 24(1):224–230

    Google Scholar 

  12. Wu CC, Chen WJ (1997) Healing of 56 segmental femoral shaft fractures after locked nailing. Poor results of dynamization. Acta Orthop Scand 68(6):537–540

    Article  CAS  PubMed  Google Scholar 

  13. Tigani D et al (2005) Interlocking nail for femoral shaft fractures: is dynamization always necessary? Int Orthop 29(2):101–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Noordeen MH et al (1995) Cyclical micromovement and fracture healing. J Bone Joint Surg Br 77(4):645–648

    CAS  PubMed  Google Scholar 

  15. Wu CC (1997) The effect of dynamization on slowing the healing of femur shaft fractures after interlocking nailing. J Trauma 43(2):263–267

    Article  CAS  PubMed  Google Scholar 

  16. Bhandari M et al (2003) Predictors of reoperation following operative management of fractures of the tibial shaft. J Orthop Trauma 17(5):353–361

    Article  PubMed  Google Scholar 

  17. Epari DR et al (2013) A case for optimising fracture healing through inverse dynamization. Med Hypotheses 81(2):225–227

    Article  CAS  PubMed  Google Scholar 

  18. Kenwright J, Gardner T (1998) Mechanical influences on tibial fracture healing. Clin Orthop Relat Res 355 Suppl:S179–S190

    Article  Google Scholar 

  19. Bartnikowski N et al (2017) Modulation of fixation stiffness from flexible to stiff in a rat model of bone healing. Acta Orthop 88(2):217–222

    Article  PubMed  Google Scholar 

  20. Richardson JB et al (1995) Dynamisation of tibial fractures. J Bone Joint Surg Br 77(3):412–416

    Article  CAS  PubMed  Google Scholar 

  21. Aro HT et al (1990) The effects of physiologic dynamic compression on bone healing under external fixation. Clin Orthop 256:260–273

    Google Scholar 

  22. Howard CB et al (1999) Do axial dynamic fixators really produce axial dynamization? Injury 30(1):25–30

    Article  CAS  PubMed  Google Scholar 

  23. Ralston JL et al (1990) Mechanical analysis of the factors affecting dynamization of the Orthofix Dynamic Axial Fixator. J Orthop Trauma 4(4):449–457

    Article  CAS  PubMed  Google Scholar 

  24. Penzkofer R et al (2009) Influence of intramedullary nail diameter and locking mode on the stability of tibial shaft fracture fixation. Arch Orthop Trauma Surg 129(4):525–531

    Article  PubMed  Google Scholar 

  25. Dürselen L et al (2001) Suitability of external fixators for use in the tropics. Biomed Tech (Berl) 46(7–8):214–220

    Article  Google Scholar 

  26. Claes L, Recknagel S, Ignatius A (2012) Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol 8(3):133–143

    Article  CAS  PubMed  Google Scholar 

  27. Claes L et al (2002) Monitoring and healing analysis of 100 tibial shaft fractures. Langenbecks Arch Surg 387(3):146–152

    Article  CAS  PubMed  Google Scholar 

  28. Claes L et al (2009) Early dynamization by reduced fixation stiffness does not improve fracture healing in a rat femoral osteotomy model. J Orthop Res 27(1):22–27

    Article  PubMed  Google Scholar 

  29. Claes L et al (1997) Influence of size and stability of the osteotomy gap on the success of fracture healing. J Orthop Res 15(4):577–584

    Article  CAS  PubMed  Google Scholar 

  30. Aro HT, Chao EY (1993) Bone-healing patterns affected by loading, fracture fragment stability, fracture type, and fracture site compression. Clin Orthop 293:8–17

    Google Scholar 

  31. Egger EL et al (1993) Effects of axial dynamization on bone healing. J Trauma 34(2):185–192

    Article  CAS  PubMed  Google Scholar 

  32. Larsson S et al (2001) Effect of early axial dynamization on tibial bone healing: a study in dogs. Clin Orthop 388:240–251

    Article  Google Scholar 

  33. Georgiadis GM, Minster GJ, Moed BR (1990) Effects of dynamization after interlocking tibial nailing: an experimental study in dogs. J Orthop Trauma 4(3):323–330

    Article  CAS  PubMed  Google Scholar 

  34. Utvag SE, Rindal DB, Reikeras O (1999) Effects of torsional rigidity on fracture healing: strength and mineralization in rat femora. J Orthop Trauma 13(3):212–219

    Article  CAS  PubMed  Google Scholar 

  35. Klein P et al (2003) The initial phase of fracture healing is specifically sensitive to mechanical conditions. J Orthop Res 21(4):662–669

    Article  PubMed  Google Scholar 

  36. Hente R et al (1999) Fracture healing of the sheep tibia treated using a unilateral external fixator. Comparison of static and dynamic fixation. Injury 30(Suppl 1):A44–51

    PubMed  Google Scholar 

  37. Willie BM et al (2011) Temporal variation in fixation stiffness affects healing by differential cartilage formation in a rat osteotomy model. Clin Orthop Relat Res 469:3094–3101

    Article  PubMed  PubMed Central  Google Scholar 

  38. Egger EL et al (1988) Effects of destabilization rigid external fixation on healing of unstable canine osteotomies. 34th Annual Meeting, Orthopaedic Research Society.

    Google Scholar 

  39. Egger EL et al (1989) Effects of increasing rigidity of initially flexible external fixation on healing of canine osteotomies. 35th Annual Meeting, Orthopaedic Research Society.

    Google Scholar 

  40. Gardner TN et al (1997) Dynamic interfragmentary motion in fractures during routine patient activity. Clin Orthop 336:216–225

    Article  Google Scholar 

  41. Claes L et al (2010) Metaphyseal fracture-healing follows similar biomechanical rules as diaphyseal healing. 17th Congress of the European Society of Biomechanics (ESB), Edinburgh

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Claes.

Ethics declarations

Interessenkonflikt

L. Claes gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Claes, L. Dynamisierung der Osteosynthese. Unfallchirurg 121, 3–9 (2018). https://doi.org/10.1007/s00113-017-0455-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-017-0455-6

Schlüsselwörter

Keywords

Navigation