Skip to main content

Advertisement

Log in

Genetic modification by overexpression of target gene in mesenchymal stromal cell for treating liver diseases

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Different hepatoxic factors cause irreversible liver injury, leading to liver failure, cirrhosis, and cancer in mammals. Liver transplantation is the only effective strategy, which can improve the prognosis of patients with end-stage liver diseases, but it is limited by liver donor shortage, expensive costs, liver graft rejection and dysfunction, and recurring liver failure. Recently, mesenchymal stromal cells (MSCs) isolated from various tissues are regarded as the main stem cell type with therapeutic effects in liver diseases because of their hepatogenic differentiation, anti-inflammatory, immuoregulatory, anti-apoptotic, antifibrotic, and antitumor capacities. To further improve the therapeutic effects of MSCs, multiple studies showed that genetically engineered MSCs have increased regenerative capacities and are able to more effectively inhibit cell death. Moreover, they are able to secrete therapeutic proteins for attenuating liver injury in liver diseases. In this review, we mainly focus on gene overexpression for reprogramming MSCs to increase their therapeutic effects in treating various liver diseases. We described the potential mechanisms of MSCs with gene overexpression in attenuating liver injury, and we recommend further expansion of experiments to discover more gene targets and optimized gene delivery methods for MSC-based regenerative medicine. We also discussed the potential hurdles in genetic engineering MSCs. In conclusion, we highlight that we need to overcome all scientific hurdles before genetically modified MSC therapy can be translated into clinical practices for patients with liver diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

LT:

liver transplantation

HT:

hepatocyte transplantation

ESCs:

embryonic stem cells

iPSCs:

induced pluripotent stem cells

HLCs:

hepatocyte-like cells

ALF:

acute liver failure

AFP:

alpha fetoprotein

MSCs:

mesenchymal stromal cells

HCC:

hepatocellular carcinoma

HSC:

hepatic stellate cell

ISCT:

International Society for Cellular Therapy

HGF:

hepatocyte growth factor

FGF:

fibroblast growth factor

EGF:

epidermal growth factor

OSM:

oncostatin M

ALB:

albumin

CK18:

cytokeratin 18

CK19:

cytokeratin 19

bFGF:

basic fibroblast growth factor

IL-1Ra:

interleukin-1-receptor antagonist

IL:

interleukin

MELD:

Model For End-Stage Liver Disease

PE:

plasma exchange

ACLF:

acute-on-chronic liver failure

ALT:

alanine transaminase

miRNA:

microRNA

ZFNs:

zinc finger nucleases

TALENs:

transcription activator-like effector nucleases

HNF4α:

hepatocyte nuclear factor 4 alpha

ICG:

indocyanine green

FOXA2:

forkhead box protein A2

hAAT:

human α1-antitrypsin

CCl4 :

carbon tetrachloride

RSLT:

reduced-size liver transplantation

CXCR4:

C-X-C chemokine receptor type 4

SDF1α:

stromal cell-derived factor 1α

VEGF:

vascular endothelial growth factor

TNF:

tumor necrosis factor

GSH:

glutathione

iNOS:

nitric oxide synthase

HO:

heme oxygenase

Foxp3:

forkhead box P3

PD-L1:

programmed death ligand 1

Th:

T helper

AST:

aspartate transaminase

PDGF:

platelet-derived growth factor

TIMP-1:

tissue inhibitor of metalloprotease-1

TGF:

transforming growth factor

MMP:

matrix metalloprotease

PCNA:

proliferating cell nuclear antigen

EpCAM:

epithelial cell adhesion molecule

HA:

hyaluronic acid

NF-κB:

nuclear factor kappa B

α-SMA:

alpha-smooth muscle actin

IGF-I:

insulin growth factor like-I

IFN:

interferon

sFlt-1:

soluble fms-like tyrosine kinase-1

PEDF:

pigment epithelial-derived factor

References

  1. Meirelles Junior RF, Salvalaggio P, Rezende MB, Evangelista AS, Guardia BD, Matielo CE, Neves DB, Pandullo FL, Felga GE, Alves JA, Curvelo LA, Diaz LG, Rusi MB, Viveiros Mde M, Almeida MD, Pedroso PT, Rocco RA, Meira Filho SP (2015) Liver transplantation: history, outcomes and perspectives. Einstein (Sao Paulo) 13(1):149–152

    Article  Google Scholar 

  2. Hu C, Li L (2019) The immunoregulation of mesenchymal stem cells plays a critical role in improving the prognosis of liver transplantation. J Transl Med 17(1):412

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ascha MS, Ascha ML, Hanouneh IA (2016) Management of immunosuppressant agents following liver transplantation: less is more. World J Hepatol 8(3):148–161

    Article  PubMed  PubMed Central  Google Scholar 

  4. Volarevic V, Nurkovic J, Arsenijevic N, Stojkovic M (2014) Concise review: therapeutic potential of mesenchymal stem cells for the treatment of acute liver failure and cirrhosis. Stem Cells (Dayton, Ohio) 32(11):2818–2823

    Article  CAS  Google Scholar 

  5. Dhawan A, Puppi J, Hughes RD, Mitry RR (2010) Human hepatocyte transplantation: current experience and future challenges. Nat Rev Gastroenterol Hepatol 7(5):288–298

    Article  PubMed  Google Scholar 

  6. Lin SL (2011) Concise review: deciphering the mechanism behind induced pluripotent stem cell generation. Stem Cells (Dayton, Ohio) 29(11):1645–1649

    Article  Google Scholar 

  7. Shroff G, Dhanda Titus J, Shroff R (2017) A review of the emerging potential therapy for neurological disorders: human embryonic stem cell therapy. Am J Stem Cells 6(1):1–12

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  9. Shi Y, Inoue H, Wu JC, Yamanaka S (2017) Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov 16(2):115–130

    Article  CAS  PubMed  Google Scholar 

  10. Sauer V, Roy-Chowdhury N, Guha C, Roy-Chowdhury J (2014) Induced pluripotent stem cells as a source of hepatocytes. Curr Pathobiol Rep 2(1):11–20

    Article  PubMed  PubMed Central  Google Scholar 

  11. Forbes SJ, Gupta S, Dhawan A (2015) Cell therapy for liver disease: from liver transplantation to cell factory. J Hepatol 62(1 Suppl):S157–S169

    Article  CAS  PubMed  Google Scholar 

  12. Asgari S, Moslem M, Bagheri-Lankarani K, Pournasr B, Miryounesi M, Baharvand H (2013) Differentiation and transplantation of human induced pluripotent stem cell-derived hepatocyte-like cells. Stem Cell Rev Rep 9(4):493–504

    Article  CAS  PubMed  Google Scholar 

  13. Tolosa L, Caron J, Hannoun Z, Antoni M, López S, Burks D, Castell JV, Weber A, Gomez-Lechon MJ, Dubart-Kupperschmitt A (2015) Transplantation of hESC-derived hepatocytes protects mice from liver injury. Stem Cell Res Ther 6:246

    Article  PubMed  PubMed Central  Google Scholar 

  14. Carpentier A, Tesfaye A, Chu V, Nimgaonkar I, Zhang F, Lee SB, Thorgeirsson SS, Feinstone SM, Liang TJ (2014) Engrafted human stem cell-derived hepatocytes establish an infectious HCV murine model. J Clin Invest 124(11):4953–4964

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kajiwara M, Aoi T, Okita K, Takahashi R, Inoue H, Takayama N, Endo H, Eto K, Toguchida J, Uemoto S, Yamanaka S (2012) Donor-dependent variations in hepatic differentiation from human-induced pluripotent stem cells. Proc Natl Acad Sci U S A 109(31):12538–12543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yoshida GJ (2018) Emerging roles of Myc in stem cell biology and novel tumor therapies. J Exp Clin Cancer Res 37(1):173

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chae YJ, Jun DW, Lee JS, Saeed WK, Kang HT, Jang K, Lee JH (2019) The use of Foxa2-overexpressing adipose tissue-derived stem cells in a scaffold system attenuates acute liver injury. Gut Liver 13(4):450–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Di Rocco G, Gentile A, Antonini A, Truffa S, Piaggio G, Capogrossi MC, Toietta G (2012) Analysis of biodistribution and engraftment into the liver of genetically modified mesenchymal stromal cells derived from adipose tissue. Cell Transplant 21(9):1997–2008

    Article  PubMed  Google Scholar 

  19. Tang Y, Li Q, Meng F, Huang X, Li C, Zhou X, Zeng X, He Y, Liu J, Hu X, Hu JF, Li T (2016) Therapeutic potential of HGF-expressing human umbilical cord mesenchymal stem cells in mice with acute liver failure. Int J Hepatol 2016:5452487–5452413

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang K, Li Y, Zhu T, Zhang Y, Li W, Lin W, Li J, Zhu C (2017) Overexpression of c-Met in bone marrow mesenchymal stem cells improves their effectiveness in homing and repair of acute liver failure. Stem Cell Res Ther 8(1):162

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yu Y, Yao AH, Chen N, Pu LY, Fan Y, Lv L, Sun BC, Li GQ, Wang XH (2007) Mesenchymal stem cells over-expressing hepatocyte growth factor improve small-for-size liver grafts regeneration. Mol Ther 15(7):1382–1389

    Article  CAS  PubMed  Google Scholar 

  22. Du Z, Wei C, Yan J, Han B, Zhang M, Peng C, Liu Y (2013) Mesenchymal stem cells overexpressing C-X-C chemokine receptor type 4 improve early liver regeneration of small-for-size liver grafts. Liver Transpl 19(2):215–225

    Article  PubMed  Google Scholar 

  23. Zheng YB, Zhang XH, Huang ZL, Lin CS, Lai J, Gu YR, Lin BL, Xie DY, Xie SB, Peng L, Gao ZL (2012) Amniotic-fluid-derived mesenchymal stem cells overexpressing interleukin-1 receptor antagonist improve fulminant hepatic failure. PLoS One 7(7):e41392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ye Z, Lu W, Liang L, Tang M, Wang Y, Li Z, Zeng H, Wang A, Lin M, Huang L, Wang H, Hu H (2019) Mesenchymal stem cells overexpressing hepatocyte nuclear factor-4 alpha alleviate liver injury by modulating anti-inflammatory functions in mice. Stem Cell Res Ther 10(1):149

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shen ZY, Wu B, Liu T, Yang Y, Yin ML, Zheng WP, Zhang BY, Song HL (2017) Immunomodulatory effects of bone marrow mesenchymal stem cells overexpressing heme oxygenase-1: protective effects on acute rejection following reduced-size liver transplantation in a rat model. Cell Immunol 313:10–24

    Article  CAS  PubMed  Google Scholar 

  26. Qi H, Chen G, Huang Y, Si Z, Li J (2015) Foxp3-modified bone marrow mesenchymal stem cells promotes liver allograft tolerance through the generation of regulatory T cells in rats. J Transl Med 13:274

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tang J, Yang R, Lv L, Yao A, Pu L, Yin A, Li X, Yu Y, Nyberg SL, Wang X (2016) Transforming growth factor-beta-expressing mesenchymal stem cells induce local tolerance in a rat liver transplantation model of acute rejection. Stem Cells (Dayton, Ohio) 34(11):2681–2692

    Article  CAS  Google Scholar 

  28. Zhang J, Zhou S, Zhou Y, Feng F, Wang Q, Zhu X, Ai H, Huang X, Zhang X (2014) Hepatocyte growth factor gene-modified adipose-derived mesenchymal stem cells ameliorate radiation induced liver damage in a rat model. PLoS One 9(12):e114670

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yu Y, Lu L, Qian X, Chen N, Yao A, Pu L, Zhang F, Li X, Kong L, Sun B, Wang X (2010) Antifibrotic effect of hepatocyte growth factor-expressing mesenchymal stem cells in small-for-size liver transplant rats. Stem Cells Dev 19(6):903–914

    Article  CAS  PubMed  Google Scholar 

  30. Kim MD, Kim SS, Cha HY, Jang SH, Chang DY, Kim W, Suh-Kim H, Lee JH (2014) Therapeutic effect of hepatocyte growth factor-secreting mesenchymal stem cells in a rat model of liver fibrosis. Exp Mol Med 46:e110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cho JW, Lee CY, Ko Y (2012) Therapeutic potential of mesenchymal stem cells overexpressing human forkhead box A2 gene in the regeneration of damaged liver tissues. J Gastroenterol Hepatol 27(8):1362–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang J, Xu L, Chen Q, Zhang Y, Hu Y, Yan L (2015) Bone mesenchymal stem cells overexpressing FGF4 contribute to liver regeneration in an animal model of liver cirrhosis. Int J Clin Exp Med 8(8):12774–12782

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kang H, Seo E, Park JM, Han NY, Lee H, Jun HS (2018) Effects of FGF21-secreting adipose-derived stem cells in thioacetamide-induced hepatic fibrosis. J Cell Mol Med 22(10):5165–5169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fiore EJ, Bayo JM, Garcia MG, Malvicini M, Lloyd R, Piccioni F, Rizzo M, Peixoto E, Sola MB, Atorrasagasti C, Alaniz L, Camilletti MA, Enguita M, Prieto J, Aquino JB, Mazzolini G (2015) Mesenchymal stromal cells engineered to produce IGF-I by recombinant adenovirus ameliorate liver fibrosis in mice. Stem Cells Dev 24(6):791–801

    Article  CAS  PubMed  Google Scholar 

  35. Fiore E, Malvicini M, Bayo J, Peixoto E, Atorrasagasti C, Sierra R, Rodriguez M, Gomez Bustillo S, Garcia MG, Aquino JB, Mazzolini G (2016) Involvement of hepatic macrophages in the antifibrotic effect of IGF-I-overexpressing mesenchymal stromal cells. Stem Cell Res Ther 7(1):172

    Article  PubMed  PubMed Central  Google Scholar 

  36. Choi JS, Jeong IS, Han JH, Cheon SH, Kim SW (2019) IL-10-secreting human MSCs generated by TALEN gene editing ameliorate liver fibrosis through enhanced anti-fibrotic activity. Biomater Sci 7(3):1078–1087

    Article  CAS  PubMed  Google Scholar 

  37. Lou G, Yang Y, Liu F, Ye B, Chen Z, Zheng M, Liu Y (2017) MiR-122 modification enhances the therapeutic efficacy of adipose tissue-derived mesenchymal stem cells against liver fibrosis. J Cell Mol Med 21(11):2963–2973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu N, Zhang YL, Wang HT, Li DW, Dai HJ, Zhang QQ, Zhang J, Ma Y, Xia Q, Bian JM, Hang HL (2016) Overexpression of hepatocyte nuclear factor 4alpha in human mesenchymal stem cells suppresses hepatocellular carcinoma development through Wnt/beta-catenin signaling pathway downregulation. Cancer Biol Ther 17(5):558–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang H, Wang J, Shi X, Ding Y (2017) Genetically engineered bone marrow-derived mesenchymal stem cells co-expressing IFN-gamma and IL-10 inhibit hepatocellular carcinoma by modulating MAPK pathway. J BUON 22(6):1517–1524

    PubMed  Google Scholar 

  40. Li G, Miao F, Zhu J, Chen Y (2017) Anti-angiogenesis gene therapy for hepatocellular carcinoma via systemic injection of mesenchymal stem cells engineered to secrete soluble Flt-1. Mol Med Rep 16(5):5799–5806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gao Y, Yao A, Zhang W, Lu S, Yu Y, Deng L, Yin A, Xia Y, Sun B, Wang X (2010) Human mesenchymal stem cells overexpressing pigment epithelium-derived factor inhibit hepatocellular carcinoma in nude mice. Oncogene 29(19):2784–2794

    Article  CAS  PubMed  Google Scholar 

  42. Saliba F, Samuel D (2013) Acute liver failure: current trends. J Hepatol 59(1):6–8

    Article  PubMed  Google Scholar 

  43. Bernal W, Auzinger G, Dhawan A, Wendon J (2010) Acute liver failure. Lancet 376(9736):190–201

    Article  PubMed  Google Scholar 

  44. D’Amico G, Morabito A, D’Amico M, Pasta L, Malizia G, Rebora P, Valsecchi MG (2018) New concepts on the clinical course and stratification of compensated and decompensated cirrhosis. Hepatol Int 12(Suppl 1):34–43

    Article  PubMed  Google Scholar 

  45. Hu C, Zhao L, Tao J, Li L (2019) Protective role of melatonin in early-stage and end-stage liver cirrhosis. J Cell Mol Med 23(11):7151–7162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Romanelli RG, Stasi C (2016) Recent advancements in diagnosis and therapy of liver cirrhosis. Curr Drug Targets 17(15):1804–1817

    Article  CAS  PubMed  Google Scholar 

  47. Dhanasekaran R, Bandoh S, Roberts LR (2016) Molecular pathogenesis of hepatocellular carcinoma and impact of therapeutic advances. F1000Res 5. https://doi.org/10.12688/f1000research.6946.1

  48. Chatterjee R, Mitra A (2015) An overview of effective therapies and recent advances in biomarkers for chronic liver diseases and associated liver cancer. Int Immunopharmacol 24(2):335–345

    Article  CAS  PubMed  Google Scholar 

  49. Sung H, Siegel RL, Torre LA, Pearson-Stuttard J, Islami F, Fedewa SA, Goding Sauer A, Shuval K, Gapstur SM, Jacobs EJ, Giovannucci EL, Jemal A (2019) Global patterns in excess body weight and the associated cancer burden. CA Cancer J Clin 69(2):88–112

    PubMed  Google Scholar 

  50. Parkin DM (2006) The global health burden of infection-associated cancers in the year 2002. Int J Cancer 118(12):3030–3044

    Article  CAS  PubMed  Google Scholar 

  51. El-Serag HB (2011) Hepatocellular carcinoma. N Engl J Med 365(12):1118–1127

    Article  CAS  PubMed  Google Scholar 

  52. Portolani N, Coniglio A, Ghidoni S, Giovanelli M, Benetti A, Tiberio GA, Giulini SM (2006) Early and late recurrence after liver resection for hepatocellular carcinoma: prognostic and therapeutic implications. Ann Surg 243(2):229–235

    Article  PubMed  PubMed Central  Google Scholar 

  53. Yang JD, Nakamura I, Roberts LR (2011) The tumor microenvironment in hepatocellular carcinoma: current status and therapeutic targets. Semin Cancer Biol 21(1):35–43

    Article  CAS  PubMed  Google Scholar 

  54. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Peault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3(3):301–313

    Article  CAS  PubMed  Google Scholar 

  55. Klein D, Weisshardt P, Kleff V, Jastrow H, Jakob HG, Ergun S (2011) Vascular wall-resident CD44+ multipotent stem cells give rise to pericytes and smooth muscle cells and contribute to new vessel maturation. PLoS One 6(5):e20540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hu C, Li L (2019) Improvement of mesenchymal stromal cells and their derivatives for treating acute liver failure. J Mol Med (Berl) 97(8):1065–1084

    Article  Google Scholar 

  57. Friedenstein AJ, Piatetzky S II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morpholog 16(3):381–390

    CAS  Google Scholar 

  58. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    Article  CAS  PubMed  Google Scholar 

  59. Ye JS, Su XS, Stoltz JF, de Isla N, Zhang L (2015) Signalling pathways involved in the process of mesenchymal stem cells differentiating into hepatocytes. Cell Prolif 48(2):157–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sun S, Chen G, Xu M, Qiao Y, Zheng S (2013) Differentiation and migration of bone marrow mesenchymal stem cells transplanted through the spleen in rats with portal hypertension. PLoS One 8(12):e83523

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wang Y, Lian F, Li J, Fan W, Xu H, Yang X, Liang L, Chen W, Yang J (2012) Adipose derived mesenchymal stem cells transplantation via portal vein improves microcirculation and ameliorates liver fibrosis induced by CCl4 in rats. J Transl Med 10:133

    Article  PubMed  PubMed Central  Google Scholar 

  62. Aurich I, Mueller LP, Aurich H, Luetzkendorf J, Tisljar K, Dollinger MM, Schormann W, Walldorf J, Hengstler JG, Fleig WE, Christ B (2007) Functional integration of hepatocytes derived from human mesenchymal stem cells into mouse livers. Gut 56(3):405–415

    Article  CAS  PubMed  Google Scholar 

  63. Zhang S, Zhu Z, Wang Y, Liu S, Zhao C, Guan W, Zhao Y (2018) Therapeutic potential of Bama miniature pig adipose stem cells induced hepatocytes in a mouse model with acute liver failure. Cytotechnology 70(4):1131–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Salem NA, Ahmed HH, Aglan HA, ElShebiney SA (2016) Nanofiber-expanded stem cells mitigate liver fibrosis: experimental study. Tissue Cell 48(5):544–551

    Article  CAS  PubMed  Google Scholar 

  65. Caplan AI, Correa D (2011) The MSC: an injury drugstore. Cell Stem Cell 9(1):11–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gao J, Dennis JE, Muzic RF, Lundberg M, Caplan AI (2001) The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 169(1):12–20

    Article  CAS  PubMed  Google Scholar 

  67. Lee KC, Lin HC, Huang YH, Hung SC (2015) Allo-transplantation of mesenchymal stem cells attenuates hepatic injury through IL1Ra dependent macrophage switch in a mouse model of liver disease. J Hepatol 63(6):1405–1412

    Article  CAS  PubMed  Google Scholar 

  68. Rabani V, Shahsavani M, Gharavi M, Piryaei A, Azhdari Z, Baharvand H (2010) Mesenchymal stem cell infusion therapy in a carbon tetrachloride-induced liver fibrosis model affects matrix metalloproteinase expression. Cell Biol Int 34(6):601–605

    Article  PubMed  Google Scholar 

  69. Pulavendran S, Vignesh J, Rose C (2010) Differential anti-inflammatory and anti-fibrotic activity of transplanted mesenchymal vs. hematopoietic stem cells in carbon tetrachloride-induced liver injury in mice. Int Immunopharmacol 10(4):513–519

    Article  CAS  PubMed  Google Scholar 

  70. Zhang S, Chen L, Liu T, Zhang B, Xiang D, Wang Z, Wang Y (2012) Human umbilical cord matrix stem cells efficiently rescue acute liver failure through paracrine effects rather than hepatic differentiation. Tissue Eng A 18(13–14):1352–1364

    Article  CAS  Google Scholar 

  71. Lotvall J, Hill AF, Hochberg F, Buzas EI, Di Vizio D, Gardiner C, Gho YS, Kurochkin IV, Mathivanan S, Quesenberry P, Sahoo S, Tahara H, Wauben MH, Witwer KW, Thery C (2014) Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles 3:26913

    Article  PubMed  Google Scholar 

  72. Klopp AH, Gupta A, Spaeth E, Andreeff M, Marini F 3rd (2011) Concise review: dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth? Stem Cells (Dayton, Ohio) 29(1):11–19

    Article  CAS  Google Scholar 

  73. Yan XL, Jia YL, Chen L, Zeng Q, Zhou JN, Fu CJ, Chen HX, Yuan HF, Li ZW, Shi L, Xu YC, Wang JX, Zhang XM, He LJ, Zhai C, Yue W, Pei XT (2013) Hepatocellular carcinoma-associated mesenchymal stem cells promote hepatocarcinoma progression: role of the S100A4-miR155-SOCS1-MMP9 axis. Hepatology (Baltimore, Md) 57(6):2274–2286

    Article  CAS  Google Scholar 

  74. Bayo J, Fiore E, Aquino JB, Malvicini M, Rizzo M, Peixoto E, Andriani O, Alaniz L, Piccioni F, Bolontrade M, Podhajcer O, Garcia MG, Mazzolini G (2014) Increased migration of human mesenchymal stromal cells by autocrine motility factor (AMF) resulted in enhanced recruitment towards hepatocellular carcinoma. PLoS One 9(4):e95171

    Article  PubMed  PubMed Central  Google Scholar 

  75. Bayo J, Fiore E, Aquino JB, Malvicini M, Rizzo M, Peixoto E, Alaniz L, Piccioni F, Bolontrade M, Podhajcer O, Garcia MG, Mazzolini G (2014) Human umbilical cord perivascular cells exhibited enhanced migration capacity towards hepatocellular carcinoma in comparison with bone marrow mesenchymal stromal cells: a role for autocrine motility factor receptor. Biomed Res Int 2014:837420–837429

    Article  PubMed  PubMed Central  Google Scholar 

  76. Gong P, Wang Y, Jin S, Luo H, Zhang J, Bao H, Wang Z (2013) Effect of bone marrow mesenchymal stem cells on hepatocellular carcinoma in microcirculation. Tumour Biol 34(4):2161–2168

    Article  CAS  PubMed  Google Scholar 

  77. Herencia C, Martínez-Moreno JM, Herrera C, Corrales F, Santiago-Mora R, Espejo I, Barco M, Almadén Y, de la Mata M, Rodríguez-Ariza A, Muñoz-Castañeda JR (2012) Nuclear translocation of β-catenin during mesenchymal stem cells differentiation into hepatocytes is associated with a tumoral phenotype. PLoS One 7(4):e34656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Abdel aziz MT, El Asmar MF, Atta HM, Mahfouz S, Fouad HH, Roshdy NK, Rashed LA, Sabry D, Hassouna AA, Taha FM (2011) Efficacy of mesenchymal stem cells in suppression of hepatocarcinorigenesis in rats: possible role of Wnt signaling. J Exp Clin Cancer Res 30(1):49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Qiao L, Zhao TJ, Wang FZ, Shan CL, Ye LH, Zhang XD (2008) NF-kappaB downregulation may be involved the depression of tumor cell proliferation mediated by human mesenchymal stem cells. Acta Pharmacol Sin 29(3):333–340

    Article  CAS  PubMed  Google Scholar 

  80. Qiao L, Xu Z, Zhao T, Zhao Z, Shi M, Zhao RC, Ye L, Zhang X (2008) Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res 18(4):500–507

    Article  CAS  PubMed  Google Scholar 

  81. Yin Z, Jiang K, Li R, Dong C, Wang L (2018) Multipotent mesenchymal stromal cells play critical roles in hepatocellular carcinoma initiation, progression and therapy. Mol Cancer 17(1):178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mohamadnejad M, Alimoghaddam K, Bagheri M, Ashrafi M, Abdollahzadeh L, Akhlaghpoor S, Bashtar M, Ghavamzadeh A, Malekzadeh R (2013) Randomized placebo-controlled trial of mesenchymal stem cell transplantation in decompensated cirrhosis. Liver Int 33(10):1490–1496

    Article  CAS  PubMed  Google Scholar 

  83. Lanthier N, Lin-Marq N, Rubbia-Brandt L, Clément S, Goossens N, Spahr L (2017) Autologous bone marrow-derived cell transplantation in decompensated alcoholic liver disease: what is the impact on liver histology and gene expression patterns? Stem Cell Res Ther 8(1):88

    Article  PubMed  PubMed Central  Google Scholar 

  84. Xu WX, He HL, Pan SW, Chen YL, Zhang ML, Zhu S, Gao ZL, Peng L, Li JG (2019) Combination treatments of plasma exchange and umbilical cord-derived mesenchymal stem cell transplantation for patients with hepatitis B virus-related acute-on-chronic liver failure: a clinical trial in China. Stem Cells Int 2019:4130757–4130710

    Article  PubMed  PubMed Central  Google Scholar 

  85. Salama H, Zekri AR, Medhat E, Al Alim SA, Ahmed OS, Bahnassy AA, Lotfy MM, Ahmed R, Musa S (2014) Peripheral vein infusion of autologous mesenchymal stem cells in Egyptian HCV-positive patients with end-stage liver disease. Stem Cell Res Ther 5(3):70

    Article  PubMed  PubMed Central  Google Scholar 

  86. Lin BL, Chen JF, Qiu WH, Wang KW, Xie DY, Chen XY, Liu QL, Peng L, Li JG, Mei YY, Weng WZ, Peng YW, Cao HJ, Xie JQ, Xie SB, Xiang AP, Gao ZL (2017) Allogeneic bone marrow-derived mesenchymal stromal cells for hepatitis B virus-related acute-on-chronic liver failure: a randomized controlled trial. Hepatology (Baltimore, Md) 66(1):209–219

    Article  CAS  Google Scholar 

  87. Suk KT, Yoon JH, Kim MY, Kim CW, Kim JK, Park H, Hwang SG, Kim DJ, Lee BS, Lee SH, Kim HS, Jang JY, Lee CH, Kim BS, Jang YO, Cho MY, Jung ES, Kim YM, Bae SH, Baik SK (2016) Transplantation with autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: phase 2 trial. Hepatology (Baltimore, Md) 64(6):2185–2197

    Article  CAS  Google Scholar 

  88. Merrell AJ, Stanger BZ (2016) Adult cell plasticity in vivo: de-differentiation and transdifferentiation are back in style. Nat Rev Mol Cell Biol 17(7):413–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dufait I, Liechtenstein T, Lanna A, Bricogne C, Laranga R, Padella A, Breckpot K, Escors D (2012) Retroviral and lentiviral vectors for the induction of immunological tolerance. Scientifica (Cairo) 2012:1–14

    Article  Google Scholar 

  90. Patel M, Yang S (2010) Advances in reprogramming somatic cells to induced pluripotent stem cells. Stem Cell Rev Rep 6(3):367–380

    Article  CAS  PubMed  Google Scholar 

  91. Sobol M, Raykova D, Cavelier L, Khalfallah A, Schuster J, Dahl N (2015) Methods of reprogramming to induced pluripotent stem cell associated with chromosomal integrity and delineation of a chromosome 5q candidate region for growth advantage. Stem Cells Dev 24(17):2032–2040

    Article  CAS  PubMed  Google Scholar 

  92. Ban H, Nishishita N, Fusaki N, Tabata T, Saeki K, Shikamura M, Takada N, Inoue M, Hasegawa M, Kawamata S, Nishikawa S (2011) Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc Natl Acad Sci U S A 108(34):14234–14239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Aizawa E, Hirabayashi Y, Iwanaga Y, Suzuki K, Sakurai K, Shimoji M, Aiba K, Wada T, Tooi N, Kawase E, Suemori H, Nakatsuji N, Mitani K (2012) Efficient and accurate homologous recombination in hESCs and hiPSCs using helper-dependent adenoviral vectors. Mol Ther 20(2):424–431

    Article  CAS  PubMed  Google Scholar 

  94. Yang Y, Nunes FA, Berencsi K, Furth EE, Gönczöl E, Wilson JM (1994) Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc Natl Acad Sci U S A 91(10):4407–4411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Oggu GS, Sasikumar S, Reddy N, Ella KKR, Rao CM, Bokara KK (2017) Gene delivery approaches for mesenchymal stem cell therapy: strategies to increase efficiency and specificity. Stem Cell Rev Rep 13(6):725–740

    Article  CAS  PubMed  Google Scholar 

  96. Park JS, Suryaprakash S, Lao YH, Leong KW (2015) Engineering mesenchymal stem cells for regenerative medicine and drug delivery. Methods 84:3–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Helal NA, Osami A, Helmy A, McDonald T, Shaaban LA, Nounou MI (2017) Non-viral gene delivery systems: hurdles for bench-to-bedside transformation. Die Pharmazie 72(11):627–693

    CAS  PubMed  Google Scholar 

  98. Mallanna SK, Rizzino A (2010) Emerging roles of microRNAs in the control of embryonic stem cells and the generation of induced pluripotent stem cells. Dev Biol 344(1):16–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Smith ZD, Sindhu C, Meissner A (2016) Molecular features of cellular reprogramming and development. Nat Rev Mol Cell Biol 17(3):139–154

    Article  CAS  PubMed  Google Scholar 

  100. Ho PJ, Yen ML, Tang BC, Chen CT, Yen BL (2013) H2O2 accumulation mediates differentiation capacity alteration, but not proliferative decline, in senescent human fetal mesenchymal stem cells. Antioxid Redox Signal 18(15):1895–1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kyriakou C, Rabin N, Pizzey A, Nathwani A, Yong K (2008) Factors that influence short-term homing of human bone marrow-derived mesenchymal stem cells in a xenogeneic animal model. Haematologica 93(10):1457–1465

    Article  CAS  PubMed  Google Scholar 

  102. Mimeault M, Batra SK (2009) Recent insights into the molecular mechanisms involved in aging and the malignant transformation of adult stem/progenitor cells and their therapeutic implications. Ageing Res Rev 8(2):94–112

    Article  CAS  PubMed  Google Scholar 

  103. Miura M, Miura Y, Padilla-Nash HM, Molinolo AA, Fu B, Patel V, Seo BM, Sonoyama W, Zheng JJ, Baker CC, Chen W, Ried T, Shi S (2006) Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells (Dayton, Ohio) 24(4):1095–1103

    Article  Google Scholar 

  104. Hang H, Yu Y, Wu N, Huang Q, Xia Q, Bian J (2014) Induction of highly functional hepatocytes from human umbilical cord mesenchymal stem cells by HNF4α transduction. PLoS One 9(8):e104133

    Article  PubMed  PubMed Central  Google Scholar 

  105. Hu X, Xie P, Li W, Li Z, Shan H (2016) Direct induction of hepatocyte-like cells from immortalized human bone marrow mesenchymal stem cells by overexpression of HNF4α. Biochem Biophys Res Commun 478(2):791–797

    Article  CAS  PubMed  Google Scholar 

  106. Chen ML, Lee KD, Huang HC, Tsai YL, Wu YC, Kuo TM, Hu CP, Chang C (2010) HNF-4α determines hepatic differentiation of human mesenchymal stem cells from bone marrow. World J Gastroenterol 16(40):5092–5103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Han SM, Coh YR, Ahn JO, Jang G, Yum SY, Kang SK, Lee HW, Youn HY (2015) Enhanced hepatogenic transdifferentiation of human adipose tissue mesenchymal stem cells by gene engineering with Oct4 and Sox2. PLoS One 10(3):e0108874

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ding Y, Chang C, Niu Z, Dai K, Geng X, Li D, Guo J, Xu C (2016) Overexpression of transcription factor Foxa2 and Hnf1alpha induced rat bone mesenchymal stem cells into hepatocytes. Cytotechnology 68(5):2037–2047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Dai K, Chen R, Ding Y, Niu Z, Fan J, Xu C (2014) Induction of functional hepatocyte-like cells by overexpression of FOXA3 and HNF4alpha in rat bone marrow mesenchymal stem cells. Cells Tissues Organs 200(2):132–140

    Article  CAS  PubMed  Google Scholar 

  110. Xie PY, Hu XJ, Guo RM, Meng XC, Pang PF, Zhou ZY, Li D, Shan H (2019) Generation of functional hepatocyte-like cells from human bone marrow mesenchymal stem cells by overexpression of transcription factor HNF4alpha and FOXA2. Hepatobiliary Pancreat Dis Int 18(6):546–556

    Article  PubMed  Google Scholar 

  111. Guo L, Zhao RC, Wu Y (2011) The role of microRNAs in self-renewal and differentiation of mesenchymal stem cells. Exp Hematol 39(6):608–616

    Article  CAS  PubMed  Google Scholar 

  112. Song G, Sharma AD, Roll GR, Ng R, Lee AY, Blelloch RH, Frandsen NM, Willenbring H (2010) MicroRNAs control hepatocyte proliferation during liver regeneration. Hepatology (Baltimore, Md) 51(5):1735–1743

    Article  CAS  Google Scholar 

  113. Davoodian N, Lotfi AS, Soleimani M, Mowla SJ (2014) MicroRNA-122 overexpression promotes hepatic differentiation of human adipose tissue-derived stem cells. J Cell Biochem 115(9):1582–1593

    Article  CAS  PubMed  Google Scholar 

  114. Cui L, Shi Y, Zhou X, Wang X, Wang J, Lan Y, Wang M, Zheng L, Li H, Wu Q, Zhang J, Fan D, Han Y (2013) A set of microRNAs mediate direct conversion of human umbilical cord lining-derived mesenchymal stem cells into hepatocytes. Cell Death Dis 4(11):e918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mitra A, Yan J, Zhang L, Li S (2019) A small molecule hedgehog agonist HhAg1.5 mediated reprogramming breaks the quiescence of noninjured liver stem cells for rescuing liver failure. Transl Res 205:44–50

    Article  CAS  PubMed  Google Scholar 

  116. Zhou X, Cui L, Yang Q, Wang L, Guo G, Hou Y, Cai W, Han Z, Shi Y, Han Y (2017) Induction of hepatocyte-like cells from human umbilical cord-derived mesenchymal stem cells by defined microRNAs. J Cell Mol Med 21(5):881–893

    Article  CAS  PubMed  Google Scholar 

  117. Lau TT, Wang DA (2011) Stromal cell-derived factor-1 (SDF-1): homing factor for engineered regenerative medicine. Expert Opin Biol Ther 11(2):189–197

    Article  CAS  PubMed  Google Scholar 

  118. Khurana S, Mukhopadhyay A (2007) Characterization of the potential subpopulation of bone marrow cells involved in the repair of injured liver tissue. Stem Cells (Dayton, Ohio) 25(6):1439–1447

    Article  CAS  Google Scholar 

  119. Wynn RF, Hart CA, Corradi-Perini C, O’Neill L, Evans CA, Wraith JE, Fairbairn LJ, Bellantuono I (2004) A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood 104(9):2643–2645

    Article  CAS  PubMed  Google Scholar 

  120. Jang YH, You DH, Nam MJ (2015) Protective effects of HGF gene-expressing human mesenchymal stem cells in acetaminophen-treated hepatocytes. Growth Factors 33(5–6):319–325

    Article  CAS  PubMed  Google Scholar 

  121. Dinarello CA (2000) The role of the interleukin-1-receptor antagonist in blocking inflammation mediated by interleukin-1. N Engl J Med 343(10):732–734

    Article  CAS  PubMed  Google Scholar 

  122. McDaid J, Yamashita K, Chora A, Ollinger R, Strom TB, Li XC, Bach FH, Soares MP (2005) Heme oxygenase-1 modulates the allo-immune response by promoting activation-induced cell death of T cells. FASEB J 19(3):458–460

    Article  CAS  PubMed  Google Scholar 

  123. Tang Q, Bluestone JA (2008) The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol 9(3):239–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Dawson DW, Volpert OV, Gillis P, Crawford SE, Xu H, Benedict W, Bouck NP (1999) Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285(5425):245–248

    Article  CAS  PubMed  Google Scholar 

  125. Matsumoto K, Ishikawa H, Nishimura D, Hamasaki K, Nakao K, Eguchi K (2004) Antiangiogenic property of pigment epithelium-derived factor in hepatocellular carcinoma. Hepatology (Baltimore, Md) 40(1):252–259

    Article  CAS  Google Scholar 

  126. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (no. 81700553), Zhejiang basic public welfare research program (no. LGF20H030008), and the Independent Fund of State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University.

Author information

Authors and Affiliations

Authors

Contributions

Lanjuan Li contributed to the conception of this study. Chenxia Hu and Lingfei Zhao drafted the manuscript. Chenxia Hu revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lanjuan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, C., Zhao, L. & Li, L. Genetic modification by overexpression of target gene in mesenchymal stromal cell for treating liver diseases. J Mol Med 99, 179–192 (2021). https://doi.org/10.1007/s00109-020-02031-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-020-02031-5

Keywords

Navigation