Skip to main content

Advertisement

Log in

Advances in Reprogramming Somatic Cells to Induced Pluripotent Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Traditionally, nuclear reprogramming of cells has been performed by transferring somatic cell nuclei into oocytes, by combining somatic and pluripotent cells together through cell fusion and through genetic integration of factors through somatic cell chromatin. All of these techniques changes gene expression which further leads to a change in cell fate. Here we discuss recent advances in generating induced pluripotent stem cells, different reprogramming methods and clinical applications of iPS cells. Viral vectors have been used to transfer transcription factors (Oct4, Sox2, c-myc, Klf4, and nanog) to induce reprogramming of mouse fibroblasts, neural stem cells, neural progenitor cells, keratinocytes, B lymphocytes and meningeal membrane cells towards pluripotency. Human fibroblasts, neural cells, blood and keratinocytes have also been reprogrammed towards pluripotency. In this review we have discussed the use of viral vectors for reprogramming both animal and human stem cells. Currently, many studies are also involved in finding alternatives to using viral vectors carrying transcription factors for reprogramming cells. These include using plasmid transfection, piggyback transposon system and piggyback transposon system combined with a non viral vector system. Applications of these techniques have been discussed in detail including its advantages and disadvantages. Finally, current clinical applications of induced pluripotent stem cells and its limitations have also been reviewed. Thus, this review is a summary of current research advances in reprogramming cells into induced pluripotent stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aasen, T., Raya, A., Barrero, M. J., Garreta, E., Consiglio, A., Gonzalez, F., et al. (2008). Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nature Biotechnology, 26(11), 1276–1284.

    Article  PubMed  CAS  Google Scholar 

  2. Agarwal, S. (2006). Cellular reprogramming. Methods in Enzymology, 420, 265–283.

    Article  PubMed  CAS  Google Scholar 

  3. Amabile, G., & Meissner, A. (2009). Induced pluripotent stem cells: current progress and potential for regenerative medicine. Trends in Molecular Medicine, 15(2), 59–68.

    Article  PubMed  CAS  Google Scholar 

  4. Andrews, P. W., & Goodfellow, P. N. (1980). Antigen expression by somatic cell hybrids of a murine embryonal carcinoma cell with thymocytes and L cells. Somatic Cell Genetics, 6(2), 271–284.

    Article  PubMed  CAS  Google Scholar 

  5. Avilion, A. A., Nicolis, S. K., Pevny, L. H., Perez, L., Vivian, N., & Lovell-Badge, R. (2003). Multipotent cell lineages in early mouse development depend on SOX2 function. Genes and Development, 17(1), 126–140.

    Article  PubMed  CAS  Google Scholar 

  6. Barroca, V., Lassalle, B., Coureuil, M., Louis, J. P., Le Page, F., Testart, J., et al. (2009). Mouse differentiating spermatogonia can generate germinal stem cells in vivo. Nature Cell Biology, 11(2), 190–196.

    Article  PubMed  CAS  Google Scholar 

  7. Ben-Shushan, E., Thompson, J. R., Gudas, L. J., & Bergman, Y. (1998). Rex-1, a gene encoding a transcription factor expressed in the early embryo, is regulated via Oct-3/4 and Oct-6 binding to an octamer site and a novel protein, Rox-1, binding to an adjacent site. Molecular and Cellular Biology, 18(4), 1866–1878.

    PubMed  CAS  Google Scholar 

  8. Beyhan, Z., Iager, A. E., & Cibelli, J. B. (2007). Interspecies nuclear transfer: implications for embryonic stem cell biology. Cell Stem Cell, 1(5), 502–512.

    Article  PubMed  CAS  Google Scholar 

  9. Boiani, M., Eckardt, S., Scholer, H. R., & McLaughlin, K. J. (2002). Oct4 distribution and level in mouse clones: consequences for pluripotency. Genes and Development, 16(10), 1209–1219.

    Article  PubMed  CAS  Google Scholar 

  10. Brem, G., & Kuhholzer, B. (2002). The recent history of somatic cloning in mammals. Cloning Stem Cells, 4(1), 57–63.

    Article  PubMed  CAS  Google Scholar 

  11. Byrne, J. A., Pedersen, D. A., Clepper, L. L., Nelson, M., Sanger, W. G., Gokhale, S., et al. (2007). Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature, 450(7169), 497–502.

    Article  PubMed  CAS  Google Scholar 

  12. Campbell, K. H., Fisher, P., Chen, W. C., Choi, I., Kelly, R. D., Lee, J. H., et al. (2007). Somatic cell nuclear transfer: past, present and future perspectives. Theriogenology, 68(Suppl 1), S214–S231.

    Article  PubMed  CAS  Google Scholar 

  13. Chambers, S. M., Fasano, C. A., Papapetrou, E. P., Tomishima, M., Sadelain, M., & Studer, L. (2009). Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature Biotechnology, 27(3), 275–280.

    Article  PubMed  CAS  Google Scholar 

  14. Cheng, L., Sung, M. T., Cossu-Rocca, P., Jones, T. D., MacLennan, G. T., De Jong, J., et al. (2007). OCT4: biological functions and clinical applications as a marker of germ cell neoplasia. Journal of Pathology, 211(1), 1–9.

    Article  PubMed  CAS  Google Scholar 

  15. Cowan, C. A., Atienza, J., Melton, D. A., & Eggan, K. (2005). Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science, 309(5739), 1369–1373.

    Article  PubMed  CAS  Google Scholar 

  16. Dimos, J. T., Rodolfa, K. T., Niakan, K. K., Weisenthal, L. M., Mitsumoto, H., Chung, W., et al. (2008). Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 321(5893), 1218–1221.

    Article  PubMed  CAS  Google Scholar 

  17. Do, J. T., & Scholer, H. R. (2004). Nuclei of embryonic stem cells reprogram somatic cells. Stem Cells, 22(6), 941–949.

    Article  PubMed  CAS  Google Scholar 

  18. Do, J. T., & Scholer, H. R. (2006). Cell-cell fusion as a means to establish pluripotency. Ernst Schering Research Foundation Workshop, 60(60), 35–45.

    Google Scholar 

  19. Duinsbergen, D., Eriksson, M., t Hoen, P. A., Frisen, J., & Mikkers, H. (2008). Induced pluripotency with endogenous and inducible genes. Experimental Cell Research, 314(17), 3255–3263.

    Article  PubMed  CAS  Google Scholar 

  20. Ebert, A. D., Yu, J., Rose, F. F., Jr., Mattis, V. B., Lorson, C. L., Thomson, J. A., et al. (2009). Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature, 457(7227), 277–280.

    Article  PubMed  CAS  Google Scholar 

  21. Egli, D., Rosains, J., Birkhoff, G., & Eggan, K. (2007). Developmental reprogramming after chromosome transfer into mitotic mouse zygotes. Nature, 447(7145), 679–685.

    Article  PubMed  CAS  Google Scholar 

  22. Ellis, P., Fagan, B. M., Magness, S. T., Hutton, S., Taranova, O., Hayashi, S., et al. (2004). SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Developmental Neuroscience, 26(2–4), 148–165.

    Article  PubMed  CAS  Google Scholar 

  23. Eminli, S., Utikal, J., Arnold, K., Jaenisch, R., & Hochedlinger, K. (2008). Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2 expression. Stem Cells, 26(10), 2467–2474.

    Article  PubMed  CAS  Google Scholar 

  24. Feng, B., Jiang, J., Kraus, P., Ng, J. H., Heng, J. C., Chan, Y. S., et al. (2009). Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nature Cell Biology, 11(2), 197–203.

    Article  PubMed  CAS  Google Scholar 

  25. Flake, A. W., & Zanjani, E. D. (1997). Cellular therapy. Obstetrics and Gynecology Clinics of North America, 24(1), 159–177.

    Article  PubMed  CAS  Google Scholar 

  26. Flasza, M., Shering, A. F., Smith, K., Andrews, P. W., Talley, P., & Johnson, P. A. (2003). Reprogramming in inter-species embryonal carcinoma-somatic cell hybrids induces expression of pluripotency and differentiation markers. Cloning Stem Cells, 5(4), 339–354.

    Article  PubMed  CAS  Google Scholar 

  27. Foster, K. W., Liu, Z., Nail, C. D., Li, X., Fitzgerald, T. J., Bailey, S. K., et al. (2005). Induction of KLF4 in basal keratinocytes blocks the proliferation-differentiation switch and initiates squamous epithelial dysplasia. Oncogene, 24(9), 1491–1500.

    Article  PubMed  CAS  Google Scholar 

  28. Fulka, J., Jr., First, N. L., Loi, P., & Moor, R. M. (1998). Cloning by somatic cell nuclear transfer. Bioessays, 20(10), 847–851.

    Article  PubMed  Google Scholar 

  29. Fulka, J., Jr., Loi, P., Fulka, H., Ptak, G., & Nagai, T. (2004). Nucleus transfer in mammals: noninvasive approaches for the preparation of cytoplasts. Trends in Biotechnology, 22(6), 279–283.

    Article  PubMed  CAS  Google Scholar 

  30. Gaudet, F., Hodgson, J. G., Eden, A., Jackson-Grusby, L., Dausman, J., Gray, J. W., et al. (2003). Induction of tumors in mice by genomic hypomethylation. Science, 300(5618), 489–492.

    Article  PubMed  CAS  Google Scholar 

  31. Gearhart, J., Pashos, E. E., & Prasad, M. K. (2007). Pluripotency redux–advances in stem-cell research. New England Journal of Medicine, 357(15), 1469–1472.

    Article  PubMed  CAS  Google Scholar 

  32. Gmur, R., Solter, D., & Knowles, B. B. (1980). Independent regulation of H-2K and H-2D gene expression in murine teratocarcinoma somatic cell hybrids. Journal of Experimental Medicine, 151(6), 1349–1359.

    Article  PubMed  CAS  Google Scholar 

  33. Gonzales, C., & Pedrazzini, T. (2009). Progenitor cell therapy for heart disease. Experimental Cell Research, 315(18), 3077–3085.

    Google Scholar 

  34. Grinnell, K. L., Yang, B., Eckert, R. L., & Bickenbach, J. R. (2007). De-differentiation of mouse interfollicular keratinocytes by the embryonic transcription factor Oct-4. Journal of Investigative Dermatology, 127(2), 372–380.

    Article  PubMed  CAS  Google Scholar 

  35. Gurdon, J. B., & Melton, D. A. (2008). Nuclear reprogramming in cells. Science, 322(5909), 1811–1815.

    Article  PubMed  CAS  Google Scholar 

  36. Hanna, J., Wernig, M., Markoulaki, S., Sun, C. W., Meissner, A., Cassady, J. P., et al. (2007). Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science, 318(5858), 1920–1923.

    Article  PubMed  CAS  Google Scholar 

  37. Hanna, J., Markoulaki, S., Schorderet, P., Carey, B. W., Beard, C., Wernig, M., et al. (2008). Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell, 133(2), 250–264.

    Article  PubMed  CAS  Google Scholar 

  38. Hanna, J., Saha, K., Pando, B., Zon, J., Lenger, C., & Creyghton, M. (2009). Direct cell reprogramming is a stochastic process amenable to acceleration. Nature, 462, 595–601.

    Article  PubMed  CAS  Google Scholar 

  39. Heyman, Y., Vignon, X., Chesne, P., Le Bourhis, D., Marchal, J., & Renard, J. P. (1998). Cloning in cattle: from embryo splitting to somatic nuclear transfer. Reproduction, Nutrition, Development, 38(6), 595–603.

    Article  PubMed  CAS  Google Scholar 

  40. Hiiragi, T., & Solter, D. (2005). Reprogramming is essential in nuclear transfer. Molecular Reproduction and Development, 70(4), 417–421.

    Article  PubMed  CAS  Google Scholar 

  41. Hochedlinger, K., & Jaenisch, R. (2002). Nuclear transplantation: lessons from frogs and mice. Current Opinion in Cell Biology, 14(6), 741–748.

    Article  PubMed  CAS  Google Scholar 

  42. Hochedlinger, K., & Jaenisch, R. (2003). Nuclear transplantation, embryonic stem cells, and the potential for cell therapy. New England Journal of Medicine, 349(3), 275–286.

    Article  PubMed  CAS  Google Scholar 

  43. Hochedlinger, K., & Jaenisch, R. (2006). Nuclear reprogramming and pluripotency. Nature, 441(7097), 1061–1067.

    Article  PubMed  CAS  Google Scholar 

  44. Hochedlinger, K., & Plath, K. (2009). Epigenetic reprogramming and induced pluripotency. Development, 136(4), 509–523.

    Article  PubMed  CAS  Google Scholar 

  45. Hochedlinger, K., Rideout, W. M., Kyba, M., Daley, G. Q., Blelloch, R., & Jaenisch, R. (2004). Nuclear transplantation, embryonic stem cells and the potential for cell therapy. Hematology Journal, 5(Suppl 3), S114–S117.

    Article  PubMed  Google Scholar 

  46. Hochedlinger, K., Yamada, Y., Beard, C., & Jaenisch, R. (2005). Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell, 121(3), 465–477.

    Article  PubMed  CAS  Google Scholar 

  47. Hotta, A., & Ellis, J. (2008). Retroviral vector silencing during iPS cell induction: an epigenetic beacon that signals distinct pluripotent states. Journal of Cellular Biochemistry, 105(4), 940–948.

    Article  PubMed  CAS  Google Scholar 

  48. Huangfu, D., Maehr, R., Guo, W., Eijkelenboom, A., Snitow, M., Chen, A. E., et al. (2008). Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nature Biotechnology, 26(7), 795–797.

    Article  PubMed  CAS  Google Scholar 

  49. Huangfu, D., Osafune, K., Maehr, R., Guo, W., Eijkelenboom, A., Chen, S., et al. (2008). Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nature Biotechnology, 26(11), 1269–1275.

    Article  PubMed  CAS  Google Scholar 

  50. Ichida, J., Blanchard, J., Lam, K., Son, E., Chung, J., Egli, D., et al. (2009). A small molecule inhibitor of TGF-beta signaling replaces Sox2 in reprogramming by inducing Nanog. Cell Stem Cell, 5, 491–503.

    Article  PubMed  CAS  Google Scholar 

  51. Jaenisch, R., Hochedlinger, K., Blelloch, R., Yamada, Y., Baldwin, K., & Eggan, K. (2004). Nuclear cloning, epigenetic reprogramming, and cellular differentiation. Cold Spring Harbor Symposia on Quantitative Biology, 69, 19–27.

    PubMed  CAS  Google Scholar 

  52. Kaji, K., Norrby, K., Paca, A., Mileikovsky, M., Mohseni, P., & Woltjen, K. (2009). Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature, 458(7239), 771–775.

    Article  PubMed  CAS  Google Scholar 

  53. Kaji, K., Norrby, K., Paca, A., Mileikovsky, M., Mohseni, P., & Woltjen, K. (2009). Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature, 458(7239), 771–775.

    Google Scholar 

  54. Kim, J. B., Zaehres, H., Wu, G., Gentile, L., Ko, K., Sebastiano, V., et al. (2008). Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature, 454(7204), 646–650.

    Article  PubMed  CAS  Google Scholar 

  55. Kim, J. B., Sebastiano, V., Wu, G., Arauzo-Bravo, M. J., Sasse, P., Gentile, L., et al. (2009). Oct4-induced pluripotency in adult neural stem cells. Cell, 136(3), 411–419.

    Article  PubMed  CAS  Google Scholar 

  56. Kimura, H., Tada, M., Nakatsuji, N., & Tada, T. (2004). Histone code modifications on pluripotential nuclei of reprogrammed somatic cells. Molecular and Cellular Biology, 24(13), 5710–5720.

    Article  PubMed  CAS  Google Scholar 

  57. Korsgren, O., & Nilsson, B. (2009). Improving islet transplantation: a road map for a widespread application for the cure of persons with type I diabetes. Current Opinion in Organ Transplantion, 14(6), 683–687.

    Google Scholar 

  58. Kosaka, N., Kodama, M., Sasaki, H., Yamamoto, Y., Takeshita, F., Takahama, Y., et al. (2006). FGF-4 regulates neural progenitor cell proliferation and neuronal differentiation. FASEB Journal, 20(9), 1484–1485.

    Article  PubMed  CAS  Google Scholar 

  59. Liu, S. V. (2008). iPS cells: a more critical review. Stem Cells Dev, 17(3), 391–397.

    Article  PubMed  Google Scholar 

  60. Loh, Y. H., Wu, Q., Chew, J. L., Vega, V. B., Zhang, W., Chen, X., et al. (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genetics, 38(4), 431–440.

    Article  PubMed  CAS  Google Scholar 

  61. Loh, Y. H., Agarwal, S., Park, I. H., Urbach, A., Huo, H., Heffner, G. C., et al. (2009). Generation of induced pluripotent stem cells from human blood. Blood, 113(22), 5476–5479.

    Google Scholar 

  62. Lopez Moratalla, N. (2008). Ethical principles in research related to regenerative therapy. Cuadernos de BioeÂtica, 19(66), 195–210.

    Google Scholar 

  63. Maherali, N., & Hochedlinger, K. (2008). Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell, 3(6), 595–605.

    Article  PubMed  CAS  Google Scholar 

  64. Maherali, N., Sridharan, R., Xie, W., Utikal, J., Eminli, S., Arnold, K., et al. (2007). Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell, 1(1), 55–70.

    Article  PubMed  CAS  Google Scholar 

  65. Masui, S., Nakatake, Y., Toyooka, Y., Shimosato, D., Yagi, R., Takahashi, K., et al. (2007). Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nature Cell Biology, 9(6), 625–635.

    Article  PubMed  CAS  Google Scholar 

  66. Miller, R. A., & Ruddle, F. H. (1976). Pluripotent teratocarcinoma-thymus somatic cell hybrids. Cell, 9(1), 45–55.

    Article  PubMed  CAS  Google Scholar 

  67. Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., et al. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 26(1), 101–106.

    Article  PubMed  CAS  Google Scholar 

  68. Niwa, H., Miyazaki, J., & Smith, A. G. (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genetics, 24(4), 372–376.

    Article  PubMed  CAS  Google Scholar 

  69. Odorico, J. S., Kaufman, D. S., & Thomson, J. A. (2001). Multilineage differentiation from human embryonic stem cell lines. Stem Cells, 19(3), 193–204.

    Article  PubMed  CAS  Google Scholar 

  70. Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 448(7151), 313–317.

    Article  PubMed  CAS  Google Scholar 

  71. Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T., & Yamanaka, S. (2008). Generation of mouse induced pluripotent stem cells without viral vectors. Science, 322(5903), 949–953.

    Article  PubMed  CAS  Google Scholar 

  72. Okuda, A., Fukushima, A., Nishimoto, M., Orimo, A., Yamagishi, T., Nabeshima, Y., et al. (1998). UTF1, a novel transcriptional coactivator expressed in pluripotent embryonic stem cells and extra-embryonic cells. EMBO Journal, 17(7), 2019–2032.

    Article  PubMed  CAS  Google Scholar 

  73. Ovitt, C. E., & Scholer, H. R. (1998). The molecular biology of Oct-4 in the early mouse embryo. Molecular Human Reproduction, 4(11), 1021–1031.

    Article  PubMed  CAS  Google Scholar 

  74. Pan, G., Li, J., Zhou, Y., Zheng, H., & Pei, D. (2006). A negative feedback loop of transcription factors that controls stem cell pluripotency and self-renewal. FASEB Journal, 20(10), 1730–1732.

    Article  PubMed  CAS  Google Scholar 

  75. Park, I. H., Arora, N., Huo, H., Maherali, N., Ahfeldt, T., Shimamura, A., et al. (2008). Disease-specific induced pluripotent stem cells. Cell, 134(5), 877–886.

    Article  PubMed  CAS  Google Scholar 

  76. Pera, M. F., Reubinoff, B., & Trounson, A. (2000). Human embryonic stem cells. Journal of Cell Science, 113(Pt 1), 5–10.

    PubMed  CAS  Google Scholar 

  77. Qin, D., Gan, Y., Shao, K., Wang, H., Li, W., Wang, T., et al. (2008). Mouse meningiocytes express Sox2 and yield high efficiency of chimeras after nuclear reprogramming with exogenous factors. Journal of Biological Chemistry, 283(48), 33730–33735.

    Article  PubMed  CAS  Google Scholar 

  78. Rao, M., & Condic, M. L. (2008). Alternative sources of pluripotent stem cells: scientific solutions to an ethical dilemma. Stem Cells Dev, 17(1), 1–10.

    Article  PubMed  Google Scholar 

  79. Renard, J. P. (1998). Chromatin remodelling and nuclear reprogramming at the onset of embryonic development in mammals. Reproduction, Fertility, and Development, 10(7–8), 573–580.

    Article  PubMed  CAS  Google Scholar 

  80. Rhind, S. M., Taylor, J. E., De Sousa, P. A., King, T. J., McGarry, M., & Wilmut, I. (2003). Human cloning: can it be made safe? Nature Reviews. Genetics, 4(11), 855–864.

    Article  PubMed  CAS  Google Scholar 

  81. Rideout, W. M., 3rd, Eggan, K., & Jaenisch, R. (2001). Nuclear cloning and epigenetic reprogramming of the genome. Science, 293(5532), 1093–1098.

    Article  PubMed  CAS  Google Scholar 

  82. Shevchenko, A. I., Medvedev, S. P., Mazurok, N. A., & Zakiian, S. M. (2009). Induced pluripotent stem cells. Genetika, 45(2), 160–168.

    PubMed  CAS  Google Scholar 

  83. Soldner, F., Hockemeyer, D., Beard, C., Gao, Q., Bell, G. W., Cook, E. G., et al. (2009). Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell, 136(5), 964–977.

    Article  PubMed  CAS  Google Scholar 

  84. Solter, D. (2000). Mammalian cloning: advances and limitations. Nature Reviews. Genetics, 1(3), 199–207.

    Article  PubMed  CAS  Google Scholar 

  85. Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G., & Hochedlinger, K. (2008). Induced pluripotent stem cells generated without viral integration. Science, 322(5903), 945–949.

    Article  PubMed  CAS  Google Scholar 

  86. Strong, M., Farrugia, A., & Rebulla, P. (2009). Stem cell and cellular therapy developments. Biologicals, 37(2), 103–107.

    Article  PubMed  CAS  Google Scholar 

  87. Sumi, T., Tsuneyoshi, N., Nakatsuji, N., & Suemori, H. (2007). Apoptosis and differentiation of human embryonic stem cells induced by sustained activation of c-Myc. Oncogene, 26(38), 5564–5576.

    Article  PubMed  CAS  Google Scholar 

  88. Surani, M. A. (2005). Nuclear reprogramming by human embryonic stem cells. Cell, 122(5), 653–654.

    Article  PubMed  CAS  Google Scholar 

  89. Tada, M., Tada, T., Lefebvre, L., Barton, S. C., & Surani, M. A. (1997). Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO Journal, 16(21), 6510–6520.

    Article  PubMed  CAS  Google Scholar 

  90. Tada, M., Takahama, Y., Abe, K., Nakatsuji, N., & Tada, T. (2001). Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Current Biology, 11(19), 1553–1558.

    Article  PubMed  CAS  Google Scholar 

  91. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.

    Article  PubMed  CAS  Google Scholar 

  92. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.

    Article  PubMed  CAS  Google Scholar 

  93. Taranger, C. K., Noer, A., Sorensen, A. L., Hakelien, A. M., Boquest, A. C., & Collas, P. (2005). Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Molecular Biology of the Cell, 16(12), 5719–5735.

    Article  PubMed  CAS  Google Scholar 

  94. Taura, D., Noguchi, M., Sone, M., Hosoda, K., Mori, E., Okada, Y., et al. (2009). Adipogenic differentiation of human induced pluripotent stem cells: comparison with that of human embryonic stem cells. FEBS Letters, 583(6), 1029–1033.

    Article  PubMed  CAS  Google Scholar 

  95. Tsunoda, Y., & Kato, Y. (2000). Animal cloning by somatic nuclear transfer. Tanpakushitsu Kakusan Koso, 45(13 Suppl), 2015–2020.

    PubMed  CAS  Google Scholar 

  96. Tweedell, K. S. (2008). New paths to pluripotent stem cells. Current Stem Cell Research & Therapy, 3(3), 151–162.

    Article  CAS  Google Scholar 

  97. Wade, P. A., & Kikyo, N. (2002). Chromatin remodeling in nuclear cloning. European Journal of Biochemistry, 269(9), 2284–2287.

    Article  PubMed  CAS  Google Scholar 

  98. Wakayama, T., Shinkai, Y., Tamashiro, K. L., Niida, H., Blanchard, D. C., Blanchard, R. J., et al. (2000). Cloning of mice to six generations. Nature, 407(6802), 318–319.

    Article  PubMed  CAS  Google Scholar 

  99. Wernig, M., Meissner, A., Foreman, R., Brambrink, T., Ku, M., Hochedlinger, K., et al. (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 448(7151), 318–324.

    Article  PubMed  CAS  Google Scholar 

  100. Wernig, M., Lengner, C. J., Hanna, J., Lodato, M. A., Steine, E., Foreman, R., et al. (2008). A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nature Biotechnology, 26(8), 916–924.

    Article  PubMed  CAS  Google Scholar 

  101. Wernig, M., Meissner, A., Cassady, J. P., & Jaenisch, R. (2008). c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell, 2(1), 10–12.

    Article  PubMed  CAS  Google Scholar 

  102. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., & Campbell, K. H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature, 385(6619), 810–813.

    Article  PubMed  CAS  Google Scholar 

  103. Wilmut, I., Young, L., & Campbell, K. H. (1998). Embryonic and somatic cell cloning. Reproduction, Fertility, and Development, 10(7–8), 639–643.

    Article  PubMed  CAS  Google Scholar 

  104. Woltjen, K., Michael, I. P., Mohseni, P., Desai, R., Mileikovsky, M., Hamalainen, R., et al. (2009). piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature, 458(7239), 766–770.

    Google Scholar 

  105. Yamanaka, S. (2008). Pluripotency and nuclear reprogramming. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363(1500), 2079–2087.

    Article  PubMed  CAS  Google Scholar 

  106. Yan, X., Qin, H., Qu, C., Tuan, R. S., Shi, S., & Huang, G. T. (2009). iPS cells reprogrammed from mesenchymal-like stem/progenitor cells of dental tissue origin. Stem Cells Dev, Oct 1 [Epub ahead of print].

  107. Yang, X., Smith, S. L., Tian, X. C., Lewin, H. A., Renard, J. P., & Wakayama, T. (2007). Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nature Genetics, 39(3), 295–302.

    Article  PubMed  CAS  Google Scholar 

  108. Ying, Q. L., Nichols, J., Evans, E. P., & Smith, A. G. (2002). Changing potency by spontaneous fusion. Nature, 416(6880), 545–548.

    Article  PubMed  CAS  Google Scholar 

  109. Yu, J., Vodyanik, M. A., He, P., Slukvin, I. I., & Thomson, J. A. (2006). Human embryonic stem cells reprogram myeloid precursors following cell-cell fusion. Stem Cells, 24(1), 168–176.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Start-up funding from State University of New York at Buffalo, School of Dental Medicine and NIH Grant AR055678 (Yang).

Disclosures

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuying Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, M., Yang, S. Advances in Reprogramming Somatic Cells to Induced Pluripotent Stem Cells. Stem Cell Rev and Rep 6, 367–380 (2010). https://doi.org/10.1007/s12015-010-9123-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-010-9123-8

Keywords

Navigation