Skip to main content
Log in

TGF-β1 impairs mechanosensation of human osteoblasts via HDAC6-mediated shortening and distortion of primary cilia

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Transforming growth factor β (TGF-β) is a critical regulator of bone density owing to its multiple effects on cell growth and differentiation. Recently, we have shown that TGF-β1 effectively blocks bone morphogenetic protein (BMP) induced maturation of osteoblasts by upregulating histone deacetylase (HDAC) activity. The current study aimed at investigating the effect of rhTGF-β1 treatment on the expression of specific HDACs and their cellular effects, e.g., microtubule structures (primary cilia) and mechanosensation. Exposure to TGF-β1 most significantly induced expression of HDAC6 both on gene and protein level. Being most abundant in the cytoplasm HDAC6 effectively deacetylates microtubule structures. Thus, TGF-β1-induced expression of HDAC6 led to deformation and shortening of primary cilia as well as to reduced numbers of ciliated cells. Primary cilia are described to sense mechanical stimuli. Thus, fluid flow was applied to the cells, which stimulated osteoblast function (AP activity and matrix mineralization). Compromised primary cilia in TGF-β1-treated cells were associated with reduced osteogenic function, despite exposure to fluid flow conditions. Chemical inhibition of HDAC6 with Tubacin restored primary cilium structure and length. These cells showed improved osteogenic function especially under fluid flow conditions. Summarizing our results, TGF-β1 impairs human osteoblast maturation partially via HDAC6-mediated distortion and/or shortening of primary cilia. This knowledge opens up new treatment options for trauma patients with chronically elevated TGF-β1-levels (e.g., diabetics), which frequently suffer from delayed fracture healing despite adequate mechanical stimulation.

Key messages

  • Exposure to TGF-β1 induces expression of HDAC6 in human osteoblasts.

  • TGF-β1 exposed human osteoblasts show less and distorted primary cilia.

  • TGF-β1 exposed human osteoblasts are less sensitive towards mechanical stimulation.

  • Mechanosensation can be recovered by HDAC6 inhibitor Tubacin in human osteoblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Centrella M, McCarthy TL, Canalis E (1988) Skeletal tissue and transforming growth factor beta. FASEB J 2:3066–3073

    CAS  PubMed  Google Scholar 

  2. Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685–700

    Article  CAS  PubMed  Google Scholar 

  3. Massague J, Weis-Garcia F (1996) Serine/threonine kinase receptors: mediators of transforming growth factor beta family signals. Cancer Surv 27:41–64

    CAS  PubMed  Google Scholar 

  4. Geiser AG, Zeng QQ, Sato M, Helvering LM, Hirano T, Turner CH (1998) Decreased bone mass and bone elasticity in mice lacking the transforming growth factor-beta1 gene. Bone 23:87–93

    Article  CAS  PubMed  Google Scholar 

  5. Noda M, Camilliere JJ (1989) In vivo stimulation of bone formation by transforming growth factor-beta. Endocrinology 124:2991–2994

    Article  CAS  PubMed  Google Scholar 

  6. Joyce ME, Roberts AB, Sporn MB, Bolander ME (1990) Transforming growth factor-beta and the initiation of chondrogenesis and osteogenesis in the rat femur. J Cell Biol 110:2195–2207

    Article  CAS  PubMed  Google Scholar 

  7. Erlebacher A, Derynck R (1996) Increased expression of TGF-beta 2 in osteoblasts results in an osteoporosis-like phenotype. J Cell Biol 132:195–210

    Article  CAS  PubMed  Google Scholar 

  8. Filvaroff E, Erlebacher A, Ye J, Gitelman SE, Lotz J, Heillman M, Derynck R (1999) Inhibition of TGF-beta receptor signaling in osteoblasts leads to decreased bone remodeling and increased trabecular bone mass. Development 126:4267–4279

    CAS  PubMed  Google Scholar 

  9. Mohammad KS, Chen CG, Balooch G, Stebbins E, McKenna CR, Davis H, Niewolna M, Peng XH, Nguyen DH, Ionova-Martin SS et al (2009) Pharmacologic inhibition of the TGF-beta type I receptor kinase has anabolic and anti-catabolic effects on bone. PLoS One 4:e5275

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ehnert S, Freude T, Ihle C, Mayer L, Braun B, Graeser J, Flesch I, Stockle U, Nussler AK, Pscherer S (2015) Factors circulating in the blood of type 2 diabetes mellitus patients affect osteoblast maturation—description of a novel in vitro model. Exp Cell Res 332:247–258

    Article  CAS  PubMed  Google Scholar 

  11. Nussler AK, Wildemann B, Freude T, Litzka C, Soldo P, Friess H, Hammad S, Hengstler JG, Braun KF, Trak-Smayra V et al (2014) Chronic CCl4 intoxication causes liver and bone damage similar to the human pathology of hepatic osteodystrophy: a mouse model to analyse the liver-bone axis. Arch Toxicol 88:997–1006

    Article  CAS  PubMed  Google Scholar 

  12. Pscherer S, Freude T, Forst T, Nussler AK, Braun KF, Ehnert S (2013) Anti-diabetic treatment regulates pro-fibrotic TGF-beta serum levels in type 2 diabetics. Diabetol Metab Syndr 5:48

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ehnert S, Baur J, Schmitt A, Neumaier M, Lucke M, Dooley S, Vester H, Wildemann B, Stockle U, Nussler AK (2010) TGF-beta1 as possible link between loss of bone mineral density and chronic inflammation. PLoS One 5:e14073

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zimmermann G, Henle P, Kusswetter M, Moghaddam A, Wentzensen A, Richter W, Weiss S (2005) TGF-beta1 as a marker of delayed fracture healing. Bone 36:779–785

    Article  CAS  PubMed  Google Scholar 

  15. Grafe I, Yang T, Alexander S, Homan EP, Lietman C, Jiang MM, Bertin T, Munivez E, Chen Y, Dawson B et al (2014) Excessive transforming growth factor-beta signaling is a common mechanism in osteogenesis imperfecta. Nat Med 20:670–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhen G, Wen C, Jia X, Li Y, Crane JL, Mears SC, Askin FB, Frassica FJ, Chang W, Yao J et al (2013) Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med 19:704–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ehnert S, Zhao J, Pscherer S, Freude T, Dooley S, Kolk A, Stockle U, Nussler AK, Hube R (2012) Transforming growth factor beta1 inhibits bone morphogenic protein (BMP)-2 and BMP-7 signaling via upregulation of Ski-related novel protein N (SnoN): possible mechanism for the failure of BMP therapy? BMC Med 10:101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Deheuninck J, Luo K (2009) Ski and SnoN, potent negative regulators of TGF-beta signaling. Cell Res 19:47–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749

    Article  PubMed  PubMed Central  Google Scholar 

  20. Maroni P, Brini AT, Arrigoni E, de Girolamo L, Niada S, Matteucci E, Bendinelli P, Desiderio MA (2012) Chemical and genetic blockade of HDACs enhances osteogenic differentiation of human adipose tissue-derived stem cells by oppositely affecting osteogenic and adipogenic transcription factors. Biochem Biophys Res Commun 428:271–277

    Article  CAS  PubMed  Google Scholar 

  21. Saito T, Nishida K, Furumatsu T, Yoshida A, Ozawa M, Ozaki T (2013) Histone deacetylase inhibitors suppress mechanical stress-induced expression of RUNX-2 and ADAMTS-5 through the inhibition of the MAPK signaling pathway in cultured human chondrocytes. Osteoarthr Cartil 21:165–174

    Article  CAS  PubMed  Google Scholar 

  22. Wang JH, Shih KS, Wu YW, Wang AW, Yang CR (2013) Histone deacetylase inhibitors increase microRNA-146a expression and enhance negative regulation of interleukin-1beta signaling in osteoarthritis fibroblast-like synoviocytes. Osteoarthr Cartil 21:1987–1996

    Article  CAS  PubMed  Google Scholar 

  23. Liu T, Hou L, Zhao Y, Huang Y (2015) Epigenetic silencing of HDAC1 by miR-449a upregulates Runx2 and promotes osteoblast differentiation. Int J Mol Med 35:238–246

    PubMed  Google Scholar 

  24. Lee HW, Suh JH, Kim AY, Lee YS, Park SY, Kim JB (2006) Histone deacetylase 1-mediated histone modification regulates osteoblast differentiation. Mol Endocrinol 20:2432–2443

    Article  CAS  PubMed  Google Scholar 

  25. Schroeder TM, Kahler RA, Li X, Westendorf JJ (2004) Histone deacetylase 3 interacts with runx2 to repress the osteocalcin promoter and regulate osteoblast differentiation. J Biol Chem 279:41998–42007

    Article  CAS  PubMed  Google Scholar 

  26. Jensen ED, Schroeder TM, Bailey J, Gopalakrishnan R, Westendorf JJ (2008) Histone deacetylase 7 associates with Runx2 and represses its activity during osteoblast maturation in a deacetylation-independent manner. J Bone Miner Res 23:361–372

    Article  CAS  PubMed  Google Scholar 

  27. Fu Y, Zhang P, Ge J, Cheng J, Dong W, Yuan H, Du Y, Yang M, Sun R, Jiang H (2014) Histone deacetylase 8 suppresses osteogenic differentiation of bone marrow stromal cells by inhibiting histone H3K9 acetylation and RUNX2 activity. Int J Biochem Cell Biol 54:68–77

    Article  CAS  PubMed  Google Scholar 

  28. Westendorf JJ, Zaidi SK, Cascino JE, Kahler R, van Wijnen AJ, Lian JB, Yoshida M, Stein GS, Li X (2002) Runx2 (Cbfa1, AML-3) interacts with histone deacetylase 6 and represses the p21(CIP1/WAF1) promoter. Mol Cell Biol 22:7982–7992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kang JS, Alliston T, Delston R, Derynck R (2005) Repression of Runx2 function by TGF-beta through recruitment of class II histone deacetylases by Smad3. EMBO J 24:2543–2555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bertos NR, Wang AH, Yang XJ (2001) Class II histone deacetylases: structure, function, and regulation. Biochem Cell Biol 79:243–252

    Article  CAS  PubMed  Google Scholar 

  31. Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF, Yao TP (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417:455–458

    Article  CAS  PubMed  Google Scholar 

  32. DeRouen MC, Oro AE (2009) The primary cilium: a small yet mighty organelle. J Invest Dermatol 129:264–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Veland IR, Awan A, Pedersen LB, Yoder BK, Christensen ST (2009) Primary cilia and signaling pathways in mammalian development, health and disease. Nephron Physiol 111:p39–p53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gardner K, Arnoczky SP, Lavagnino M (2011) Effect of in vitro stress-deprivation and cyclic loading on the length of tendon cell cilia in situ. J Orthop Res 29:582–587

    Article  PubMed  Google Scholar 

  35. McGlashan SR, Knight MM, Chowdhury TT, Joshi P, Jensen CG, Kennedy S, Poole CA (2010) Mechanical loading modulates chondrocyte primary cilia incidence and length. Cell Biol Int 34:441–446

    Article  PubMed  Google Scholar 

  36. Delaine-Smith RM, Sittichokechaiwut A, Reilly GC (2014a) Primary cilia respond to fluid shear stress and mediate flow-induced calcium deposition in osteoblasts. FASEB J 28:430–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Malone AM, Anderson CT, Tummala P, Kwon RY, Johnston TR, Stearns T, Jacobs CR (2007) Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci U S A 104:13325–13330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Qiu N, Xiao Z, Cao L, Buechel MM, David V, Roan E, Quarles LD (2012) Disruption of Kif3a in osteoblasts results in defective bone formation and osteopenia. J Cell Sci 125:1945–1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xiao Z, Dallas M, Qiu N, Nicolella D, Cao L, Johnson M, Bonewald L, Quarles LD (2011) Conditional deletion of Pkd1 in osteocytes disrupts skeletal mechanosensing in mice. FASEB J 25:2418–2432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Temiyasathit S, Tang WJ, Leucht P, Anderson CT, Monica SD, Castillo AB, Helms JA, Stearns T, Jacobs CR (2012) Mechanosensing by the primary cilium: deletion of Kif3A reduces bone formation due to loading. PLoS One 7:e33368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sreekumar V, Aspera-Werz RH, Tendulkar G, Reumann MK, Freude T, Breitkopf-Heinlein K, Dooley S, Pscherer S, Ochs BG, Flesch I et al (2016) BMP9 a possible alternative drug for the recently withdrawn BMP7? New perspectives for (re-)implementation by personalized medicine. Arch Toxicol

  42. Dummer A, Poelma C, DeRuiter MC, Goumans MJ, Hierck BP (2016) Measuring the primary cilium length: improved method for unbiased high-throughput analysis. Cilia 5:7

    Article  PubMed  PubMed Central  Google Scholar 

  43. Schemies J, Sippl W, Jung M (2009) Histone deacetylase inhibitors that target tubulin. Cancer Lett 280:222–232

    Article  CAS  PubMed  Google Scholar 

  44. Shan B, Yao TP, Nguyen HT, Zhuo Y, Levy DR, Klingsberg RC, Tao H, Palmer ML, Holder KN, Lasky JA (2008) Requirement of HDAC6 for transforming growth factor-beta1-induced epithelial-mesenchymal transition. J Biol Chem 283:21065–21073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Deskin B, Lasky J, Zhuang Y, Shan B (2016) Requirement of HDAC6 for activation of Notch1 by TGF-beta1. Sci Rep 6:31086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gu S, Liu Y, Zhu B, Ding K, Yao TP, Chen F, Zhan L, Xu P, Ehrlich M, Liang T et al (2016) Loss of alpha-tubulin acetylation is associated with TGF-beta-induced epithelial-mesenchymal transition. J Biol Chem 291:5396–5405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Malone AMD, Anderson CT, Tummala P, Kwon RY, Johnston TR, Stearns T, Jacobs CR (2008) Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism (vol 104, pg 13325, 2007). Proc Natl Acad Sci U S A 105:825–825

    CAS  Google Scholar 

  48. Nakakura T, Asano-Hoshino A, Suzuki T, Arisawa K, Tanaka H, Sekino Y, Kiuchi Y, Kawai K, Hagiwara H (2015) The elongation of primary cilia via the acetylation of alpha-tubulin by the treatment with lithium chloride in human fibroblast KD cells. Medical Molecular Morphology 48:44–53

    Article  CAS  PubMed  Google Scholar 

  49. Delaine-Smith RM, Sittichokechaiwut A, Reilly GC (2014b) Primary cilia respond to fluid shear stress and mediate flow-induced calcium deposition in osteoblasts. FASEB J 28:430–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ran J, Yang Y, Li D, Liu M, Zhou J (2015) Deacetylation of alpha-tubulin and cortactin is required for HDAC6 to trigger ciliary disassembly. Sci Rep 5:12917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang Y, Kwon S, Yamaguchi T, Cubizolles F, Rousseaux S, Kneissel M, Cao C, Li N, Cheng HL, Chua K et al (2008) Mice lacking histone deacetylase 6 have hyperacetylated tubulin but are viable and develop normally. Mol Cell Biol 28:1688–1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xu S, De Veirman K, Evans H, Santini GC, Vande Broek I, Leleu X, De Becker A, Van Camp B, Croucher P, Vanderkerken K et al (2013a) Effect of the HDAC inhibitor vorinostat on the osteogenic differentiation of mesenchymal stem cells in vitro and bone formation in vivo. Acta Pharmacol Sin 34:699–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. McGee-Lawrence ME, McCleary-Wheeler AL, Secreto FJ, Razidlo DF, Zhang M, Stensgard BA, Li X, Stein GS, Lian JB, Westendorf JJ (2011) Suberoylanilide hydroxamic acid (SAHA; vorinostat) causes bone loss by inhibiting immature osteoblasts. Bone 48:1117–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McGee-Lawrence ME, Westendorf JJ (2013) Reply to vorinostat induced bone loss in mice. Bone 57:531–532

    Article  PubMed  Google Scholar 

  55. Xu S, De Veirman K, Vanderkerken K, Van Riet I (2013b) Vorinostat-induced bone loss might be related to drug toxicity. Bone 57:384–385

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Hanna Scheffler and Jessica Bold for their excellent technical assistance. This work was partially supported by the intramural funding of the Eberhard Karls Universität Tübingen (fortüne Junior 2174-0-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina Ehnert.

Ethics declarations

All human studies were performed in accordance with the 1964 Declaration of Helsinki in its latest amendment. phOBs were isolated from bone tissue of patients receiving a high tibial osteotomy in accordance with the ethical standards of the University Hospital Tübingen (364/2012BO2) and the patients’ written consent.

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehnert, S., Sreekumar, V., Aspera-Werz, R.H. et al. TGF-β1 impairs mechanosensation of human osteoblasts via HDAC6-mediated shortening and distortion of primary cilia. J Mol Med 95, 653–663 (2017). https://doi.org/10.1007/s00109-017-1526-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-017-1526-4

Keywords

Navigation