Skip to main content
Log in

Aryl hydrocarbon receptor and colitis

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

The aryl hydrocarbon receptor (AhR), a transcription factor activated by a large variety of natural and synthetic ligands, has recently become the object of great interest among researchers since it represents an important link between environment and immune-mediated pathologies. In this context, evidence has been accumulated to show that AhR is necessary for the maintenance/expansion of intraepithelial lymphocytes and interleukin-22-producing innate lymphoid cells in the gut and that defects in AhR-delivered signals may contribute to amplify gut tissue destructive immune-inflammatory reactions. We here review the available data supporting the role of AhR in the control of immune homeostasis in the gut and discuss whether and how AhR activators can help dampen inflammatory processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kaser A, Zeissig S, Blumberg RS (2010) Inflammatory bowel disease. Annu Rev Immunol 28:573–621. doi:10.1146/annurev-immunol-030409-101225

    Article  PubMed  CAS  Google Scholar 

  2. Strober W, Fuss IJ (2011) Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases. Gastroenterology 140(6):1756–1767. doi:10.1053/j.gastro.2011.02.016

    Article  PubMed  CAS  Google Scholar 

  3. MacDonald TT, Monteleone I, Fantini MC, Monteleone G (2011) Regulation of homeostasis and inflammation in the intestine. Gastroenterology 140(6):1768–1775. doi:10.1053/j.gastro.2011.02.047

    Article  PubMed  CAS  Google Scholar 

  4. Cosnes J, Gower-Rousseau C, Seksik P, Cortot A (2011) Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology 140(6):1785–1794. doi:10.1053/j.gastro.2011.01.055

    Article  PubMed  Google Scholar 

  5. Cosnes J (2004) Tobacco and IBD: relevance in the understanding of disease mechanisms and clinical practice. Best Pract Res Clin Gastroenterol 18(3):481–496. doi:10.1016/j.bpg.2003.12.003

    Article  PubMed  CAS  Google Scholar 

  6. Hou JK, Abraham B, El-Serag H (2011) Dietary intake and risk of developing inflammatory bowel disease: a systematic review of the literature. Am J Gastroenterol 106(4):563–573. doi:10.1038/ajg.2011.44

    Article  PubMed  CAS  Google Scholar 

  7. Godet PG, May GR, Sutherland LR (1995) Meta-analysis of the role of oral contraceptive agents in inflammatory bowel disease. Gut 37(5):668–673

    Article  PubMed  CAS  Google Scholar 

  8. Gu YZ, Hogenesch JB, Bradfield CA (2000) The PAS superfamily: sensors of environmental and developmental signals. Annu Rev Pharmacol Toxicol 40:519–561. doi:10.1146/annurev.pharmtox.40.1.519

    Article  PubMed  CAS  Google Scholar 

  9. Denison MS, Nagy SR (2003) Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol 43:309–334. doi:10.1146/annurev.pharmtox.43.100901.135828

    Article  PubMed  CAS  Google Scholar 

  10. Rannug U, Rannug A, Sjoberg U, Li H, Westerholm R, Bergman J (1995) Structure elucidation of two tryptophan-derived, high affinity Ah receptor ligands. Chem Biol 2(12):841–845

    Article  PubMed  CAS  Google Scholar 

  11. Li Y, Innocentin S, Withers DR, Roberts NA, Gallagher AR, Grigorieva EF, Wilhelm C, Veldhoen M (2011) Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 147(3):629–640. doi:10.1016/j.cell.2011.09.025

    Article  PubMed  CAS  Google Scholar 

  12. Cheroutre H, Lambolez F, Mucida D (2011) The light and dark sides of intestinal intraepithelial lymphocytes. Nat Rev Immunol 11(7):445–456. doi:10.1038/nri3007

    Article  PubMed  CAS  Google Scholar 

  13. Lee JS, Cella M, McDonald KG, Garlanda C, Kennedy GD, Nukaya M, Mantovani A, Kopan R, Bradfield CA, Newberry RD, Colonna M (2011) AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat Immunol 13(2):144–151. doi:10.1038/ni.2187

    Article  PubMed  Google Scholar 

  14. Kiss EA, Vonarbourg C, Kopfmann S, Hobeika E, Finke D, Esser C, Diefenbach A (2011) Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 334(6062):1561–1565. doi:10.1126/science.1214914

    Article  PubMed  CAS  Google Scholar 

  15. Spits H, Di Santo JP (2011) The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat Immunol 12(1):21–27. doi:10.1038/ni.1962

    Article  PubMed  CAS  Google Scholar 

  16. Alam MS, Maekawa Y, Kitamura A, Tanigaki K, Yoshimoto T, Kishihara K, Yasutomo K (2010) Notch signaling drives IL-22 secretion in CD4+ T cells by stimulating the aryl hydrocarbon receptor. Proc Natl Acad Sci U S A. doi:10.1073/pnas.0911755107

    Google Scholar 

  17. Volpe E, Servant N, Zollinger R, Bogiatzi SI, Hupe P, Barillot E, Soumelis V (2008) A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nat Immunol 9(6):650–657

    Article  PubMed  CAS  Google Scholar 

  18. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126(6):1121–1133. doi:10.1016/j.cell.2006.07.035

    Article  PubMed  CAS  Google Scholar 

  19. Fujino S, Andoh A, Bamba S, Ogawa A, Hata K, Araki Y, Bamba T, Fujiyama Y (2003) Increased expression of interleukin 17 in inflammatory bowel disease. Gut 52(1):65–70

    Article  PubMed  CAS  Google Scholar 

  20. Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B, Parente E, Fili L, Ferri S, Frosali F, Giudici F, Romagnani P, Parronchi P, Tonelli F, Maggi E, Romagnani S (2007) Phenotypic and functional features of human Th17 cells. J Exp Med 204(8):1849–1861

    Article  PubMed  CAS  Google Scholar 

  21. Seiderer J, Elben I, Diegelmann J, Glas J, Stallhofer J, Tillack C, Pfennig S, Jurgens M, Schmechel S, Konrad A, Goke B, Ochsenkuhn T, Muller-Myhsok B, Lohse P, Brand S (2008) Role of the novel Th17 cytokine IL-17F in inflammatory bowel disease (IBD): upregulated colonic IL-17F expression in active Crohn’s disease and analysis of the IL17F p.His161Arg polymorphism in IBD. Inflamm Bowel Dis 14(4):437–445. doi:10.1002/ibd.20339

    Article  PubMed  Google Scholar 

  22. Monteleone G, Biancone L, Marasco R, Morrone G, Marasco O, Luzza F, Pallone F (1997) Interleukin 12 is expressed and actively released by Crohn’s disease intestinal lamina propria mononuclear cells. Gastroenterology 112(4):1169–1178

    Article  PubMed  CAS  Google Scholar 

  23. Schmidt C, Giese T, Ludwig B, Mueller-Molaian I, Marth T, Zeuzem S, Meuer SC, Stallmach A (2005) Expression of interleukin-12-related cytokine transcripts in inflammatory bowel disease: elevated interleukin-23p19 and interleukin-27p28 in Crohn’s disease but not in ulcerative colitis. Inflamm Bowel Dis 11(1):16–23

    Article  PubMed  Google Scholar 

  24. Caruso R, Sarra M, Stolfi C, Rizzo A, Fina D, Fantini MC, Pallone F, MacDonald TT, Monteleone G (2009) Interleukin-25 inhibits interleukin-12 production and Th1 cell-driven inflammation in the gut. Gastroenterology 136(7):2270–2279. doi:10.1053/j.gastro.2009.02.049

    Article  PubMed  CAS  Google Scholar 

  25. Iliev ID, Spadoni I, Mileti E, Matteoli G, Sonzogni A, Sampietro GM, Foschi D, Caprioli F, Viale G, Rescigno M (2009) Human intestinal epithelial cells promote the differentiation of tolerogenic dendritic cells. Gut 58(11):1481–1489. doi:10.1136/gut.2008.175166

    Article  PubMed  CAS  Google Scholar 

  26. Rodriguez-Sosa M, Elizondo G, Lopez-Duran RM, Rivera I, Gonzalez FJ, Vega L (2005) Over-production of IFN-gamma and IL-12 in AhR-null mice. FEBS Lett 579(28):6403–6410. doi:10.1016/j.febslet.2005.10.023

    Article  PubMed  CAS  Google Scholar 

  27. Veldhoen M, Hirota K, Westendorf AM, Buer J, Dumoutier L, Renauld JC, Stockinger B (2008) The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453(7191):106–109. doi:10.1038/nature06881

    Article  PubMed  CAS  Google Scholar 

  28. Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, Bettelli E, Caccamo M, Oukka M, Weiner HL (2008) Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 453(7191):65–71. doi:10.1038/nature06880

    Article  PubMed  CAS  Google Scholar 

  29. Quintana FJ, Jin H, Burns EJ, Nadeau M, Yeste A, Kumar D, Rangachari M, Zhu C, Xiao S, Seavitt J, Georgopoulos K, Kuchroo VK (2012) Aiolos promotes TH17 differentiation by directly silencing Il2 expression. Nat Immunol 13(8):770–777. doi:10.1038/ni.2363

    Article  PubMed  CAS  Google Scholar 

  30. Monteleone I, Rizzo A, Sarra M, Sica G, Sileri P, Biancone L, Macdonald TT, Pallone F, Monteleone G (2011) Aryl hydrocarbon receptor-induced signals up-regulate IL-22 production and inhibit inflammation in the gastrointestinal tract. Gastroenterology 141(1):237–248. doi:10.1053/j.gastro.2011.04.007, e231

    Article  PubMed  CAS  Google Scholar 

  31. Arsenescu R, Arsenescu V, Zhong J, Nasser M, Melinte R, Dingle RW, Swanson H, de Villiers WJ (2011) Role of the xenobiotic receptor in inflammatory bowel disease. Inflamm Bowel Dis 17(5):1149–1162. doi:10.1002/ibd.21463

    Article  PubMed  Google Scholar 

  32. Strober W, Fuss IJ, Blumberg RS (2002) The immunology of mucosal models of inflammation. Annu Rev Immunol 20:495–549

    Article  PubMed  CAS  Google Scholar 

  33. Sugimoto K, Ogawa A, Mizoguchi E, Shimomura Y, Andoh A, Bhan AK, Blumberg RS, Xavier RJ, Mizoguchi A (2008) IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Invest 118(2):534–544. doi:10.1172/JCI33194

    PubMed  CAS  Google Scholar 

  34. Zenewicz LA, Yancopoulos GD, Valenzuela DM, Murphy AJ, Stevens S, Flavell RA (2008) Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity 29(6):947–957. doi:10.1016/j.immuni.2008.11.003

    Article  PubMed  CAS  Google Scholar 

  35. Huang Z, Jiang Y, Yang Y, Shao J, Sun X, Chen J, Dong L, Zhang J (2012) 3,3′-Diindolylmethane alleviates oxazolone-induced colitis through Th2/Th17 suppression and Treg induction. Mol Immunol 53(4):335–344. doi:10.1016/j.molimm.2012.09.007

    Article  PubMed  Google Scholar 

  36. Furumatsu K, Nishiumi S, Kawano Y, Ooi M, Yoshie T, Shiomi Y, Kutsumi H, Ashida H, Fujii-Kuriyama Y, Azuma T, Yoshida M (2011) A role of the aryl hydrocarbon receptor in attenuation of colitis. Dig Dis Sci 56(9):2532–2544. doi:10.1007/s10620-011-1643-9

    Article  PubMed  CAS  Google Scholar 

  37. Takamura T, Harama D, Fukumoto S, Nakamura Y, Shimokawa N, Ishimaru K, Ikegami S, Makino S, Kitamura M, Nakao A (2011) Lactobacillus bulgaricus OLL1181 activates the aryl hydrocarbon receptor pathway and inhibits colitis. Immunol Cell Biol 89(7):817–822. doi:10.1038/icb.2010.165

    Article  PubMed  CAS  Google Scholar 

  38. Perdew GH, Babbs CF (1991) Production of Ah receptor ligands in rat fecal suspensions containing tryptophan or indole-3-carbinol. Nutr Cancer 16(3–4):209–218. doi:10.1080/01635589109514159

    Article  PubMed  CAS  Google Scholar 

  39. Gandhi R, Kumar D, Burns EJ, Nadeau M, Dake B, Laroni A, Kozoriz D, Weiner HL, Quintana FJ (2010) Activation of the aryl hydrocarbon receptor induces human type 1 regulatory T cell-like and Foxp3(+) regulatory T cells. Nat Immunol 11(9):846–853. doi:10.1038/ni.1915

    Article  PubMed  CAS  Google Scholar 

  40. Singh NP, Singh UP, Singh B, Price RL, Nagarkatti M, Nagarkatti PS (2011) Activation of aryl hydrocarbon receptor (AhR) leads to reciprocal epigenetic regulation of FoxP3 and IL-17 expression and amelioration of experimental colitis. PLoS One 6(8):e23522. doi:10.1371/journal.pone.0023522

    Article  PubMed  CAS  Google Scholar 

  41. Benson JM, Shepherd DM (2011) Aryl hydrocarbon receptor activation by TCDD reduces inflammation associated with Crohn’s disease. Toxicol Sci 120(1):68–78. doi:10.1093/toxsci/kfq360

    Article  PubMed  CAS  Google Scholar 

  42. Apetoh L, Quintana FJ, Pot C, Joller N, Xiao S, Kumar D, Burns EJ, Sherr DH, Weiner HL, Kuchroo VK (2010) The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27. Nat Immunol 11(9):854–861. doi:10.1038/ni.1912

    Article  PubMed  CAS  Google Scholar 

  43. Huber S, Gagliani N, Zenewicz LA, Huber FJ, Bosurgi L, Hu B, Hedl M, Zhang W, O’Connor W Jr, Murphy AJ, Valenzuela DM, Yancopoulos GD, Booth CJ, Cho JH, Ouyang W, Abraham C, Flavell RA (2012) IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature 491(7423):259–263. doi:10.1038/nature11535

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors received support for their work on AhR in IBD from Giuliani Spa (Milan, Italy) and “Fondazione Umberto Di Mario” (Rome, Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Monteleone.

Additional information

This article is a contribution to the special issue on Roles of Aryl Hydrocarbon Receptor in Controlling Immunity - Guest Editors: C. Pot, V. Kuchroo and F. Quintaña

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monteleone, I., Pallone, F. & Monteleone, G. Aryl hydrocarbon receptor and colitis. Semin Immunopathol 35, 671–675 (2013). https://doi.org/10.1007/s00281-013-0396-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-013-0396-2

Keywords

Navigation