Skip to main content

Advertisement

Log in

Identification of p27/KIP1 expression level as a candidate biomarker of response to rapalogs therapy in human cancer

  • Original article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Rapamycin analogs temsirolimus and everolimus have been approved for the treatment of advanced renal cancer and are being tested in a wide spectrum of human tumors. However, objective response rates with rapalogs in clinical trials were modest and variable. Identification of biomarkers capable of predicting response to rapalogs is of increasing interest. We analyzed pairwise Pearson correlation coefficients (r) between rapalogs activity and gene expression profile for each NCI-60 cell line. p27 showed the highest positive correlation among 9,706 gene probes tested. At cellular levels, breast cancer MCF-7, T47D, and BT-474 cells, expressing high levels of p27, were sensitive to rapalogs, whereas the cells expressed low levels of p27, such as MDA-MB-231, MDA-MB-468, and MDA-MB-435 cells, exhibited resistance to rapalogs. Mechanistic study indicated that this correlation is likely determined by the basal level of p27 regardless of the phosphorylation or redistribution of p27 upon rapalogs treatment, which may provide a putative threshold to block G1/S transition. Consistently, down-regulation of p27 by siRNA conferred MCF-7 and BT-474 cells insensitive to rapalogs. Moreover, a significant positive correlation between p27 gene expression and rapamycin anti-tumor activity was also observed in mice bearing different human cancer cell xenografts. In conclusion, p27 expression level is positively correlated with the anticancer activity of rapalogs in vitro and in vivo. We propose p27 expression level may be also a candidate predictive biomarker for patient selection for rapalogs-based therapy, which requires clinical validation in a series of patients treated with rapalogs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ma XM, Blenis J (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10:307–318. doi:10.1038/nrm2672

    Article  PubMed  Google Scholar 

  2. Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12:9–22. doi:10.1016/j.ccr.2007.05.008

    Article  CAS  PubMed  Google Scholar 

  3. Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A, Staroslawska E, Sosman J, McDermott D, Bodrogi I, Kovacevic Z, Lesovoy V, Schmidt-Wolf IG, Barbarash O, Gokmen E, O’Toole T, Lustgarten S, Moore L, Motzer RJ (2007) Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 356:2271–2281. doi:10.1056/NEJMoa066838

    Article  CAS  PubMed  Google Scholar 

  4. Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S, Grunwald V, Thompson JA, Figlin RA, Hollaender N, Urbanowitz G, Berg WJ, Kay A, Lebwohl D, Ravaud A (2008) Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372:449–456. doi:10.1016/S0140-6736(08)61039-9

    Article  CAS  PubMed  Google Scholar 

  5. Neshat MS, Mellinghoff IK, Tran C, Stiles B, Thomas G, Petersen R, Frost P, Gibbons JJ, Wu H, Sawyers CL (2001) Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci USA 98:10314–10319. doi:10.1073/pnas.171076798

    Article  CAS  PubMed  Google Scholar 

  6. Shi Y, Gera J, Hu L, Hsu JH, Bookstein R, Li W, Lichtenstein A (2002) Enhanced sensitivity of multiple myeloma cells containing PTEN mutations to CCI-779. Cancer Res 62:5027–5034

    CAS  PubMed  Google Scholar 

  7. Gera JF, Mellinghoff IK, Shi Y, Rettig MB, Tran C, Hsu JH, Sawyers CL, Lichtenstein AK (2004) AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression. J Biol Chem 279:2737–2746. doi:10.1074/jbc.M309999200

    Article  CAS  PubMed  Google Scholar 

  8. Galanis E, Buckner JC, Maurer MJ, Kreisberg JI, Ballman K, Boni J, Peralba JM, Jenkins RB, Dakhil SR, Morton RF, Jaeckle KA, Scheithauer BW, Dancey J, Hidalgo M, Walsh DJ (2005) Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J Clin Oncol 23:5294–5304. doi:10.1200/JCO.2005.23.622

    Article  CAS  PubMed  Google Scholar 

  9. Witzig TE, Geyer SM, Ghobrial I, Inwards DJ, Fonseca R, Kurtin P, Ansell SM, Luyun R, Flynn PJ, Morton RF, Dakhil SR, Gross H, Kaufmann SH (2005) Phase II trial of single-agent temsirolimus (CCI-779) for relapsed mantle cell lymphoma. J Clin Oncol 23:5347–5356. doi:10.1200/JCO.2005.13.466

    Article  CAS  PubMed  Google Scholar 

  10. Thomas GV, Tran C, Mellinghoff IK, Welsbie DS, Chan E, Fueger B, Czernin J, Sawyers CL (2006) Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nat Med 12:122–127. doi:10.1038/nm1337

    Article  CAS  PubMed  Google Scholar 

  11. Yang L, Clarke MJ, Carlson BL, Mladek AC, Schroeder MA, Decker P, Wu W, Kitange GJ, Grogan PT, Goble JM, Uhm J, Galanis E, Giannini C, Lane HA, James CD, Sarkaria JN (2008) PTEN loss does not predict for response to RAD001 (Everolimus) in a glioblastoma orthotopic xenograft test panel. Clin Cancer Res 14:3993–4001. doi:10.1158/1078-0432.CCR-07-4152

    Article  CAS  PubMed  Google Scholar 

  12. Chang SM, Wen P, Cloughesy T, Greenberg H, Schiff D, Conrad C, Fink K, Robins HI, De Angelis L, Raizer J, Hess K, Aldape K, Lamborn KR, Kuhn J, Dancey J, Prados MD (2005) Phase II study of CCI-779 in patients with recurrent glioblastoma multiforme. Invest New Drugs 23:357–361. doi:10.1007/s10637-005-1444-0

    Article  CAS  PubMed  Google Scholar 

  13. Meng LH, Shankavaram U, Chen C, Agama K, Fu HQ, Gonzalez FJ, Weinstein J, Pommier Y (2006) Activation of aminoflavone (NSC 686288) by a sulfotransferase is required for the antiproliferative effect of the drug and for induction of histone gamma-H2AX. Cancer Res 66:9656–9664. doi:10.1158/0008-5472.CAN-06-0796

    Article  CAS  PubMed  Google Scholar 

  14. Chu IM, Hengst L, Slingerland JM (2008) The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer 8:253–267. doi:10.1038/nrc2347

    Article  CAS  PubMed  Google Scholar 

  15. Dong C, Wilhelm D, Koopman P (2004) Sox genes and cancer. Cytogenet Genome Res 105:442–447. doi:10.1159/000078217

    Article  CAS  PubMed  Google Scholar 

  16. Epstein RJ (2004) The CXCL12-CXCR4 chemotactic pathway as a target of adjuvant breast cancer therapies. Nat Rev Cancer 4:901–909. doi:10.1038/nrc1473

    Article  CAS  PubMed  Google Scholar 

  17. Oude Weernink PA, Schmidt M, Jakobs KH (2004) Regulation and cellular roles of phosphoinositide 5-kinases. Eur J Pharmacol 500:87–99. doi:10.1016/j.ejphar.2004.07.014

    Article  CAS  PubMed  Google Scholar 

  18. Luo Y, Marx SO, Kiyokawa H, Koff A, Massague J, Marks AR (1996) Rapamycin resistance tied to defective regulation of p27Kip1. Mol Cell Biol 16:6744–6751

    CAS  PubMed  Google Scholar 

  19. Awada A, Cardoso F, Fontaine C, Dirix L, De Greve J, Sotiriou C, Steinseifer J, Wouters C, Tanaka C, Zoellner U, Tang P, Piccart M (2008) The oral mTOR inhibitor RAD001 (everolimus) in combination with letrozole in patients with advanced breast cancer: results of a phase I study with pharmacokinetics. Eur J Cancer 44:84–91. doi:10.1016/j.ejca.2007.10.003

    Article  CAS  PubMed  Google Scholar 

  20. Chan S, Scheulen ME, Johnston S, Mross K, Cardoso F, Dittrich C, Eiermann W, Hess D, Morant R, Semiglazov V, Borner M, Salzberg M, Ostapenko V, Illiger HJ, Behringer D, Bardy-Bouxin N, Boni J, Kong S, Cincotta M, Moore L (2005) Phase II study of temsirolimus (CCI-779), a novel inhibitor of mTOR, in heavily pretreated patients with locally advanced or metastatic breast cancer. J Clin Oncol 23:5314–5322. doi:10.1200/JCO.2005.66.130

    Article  CAS  PubMed  Google Scholar 

  21. Baselga J, Semiglazov V, van Dam P, Manikhas A, Bellet M, Mayordomo J, Campone M, Kubista E, Greil R, Bianchi G, Steinseifer J, Molloy B, Tokaji E, Gardner H, Phillips P, Stumm M, Lane HA, Dixon JM, Jonat W, Rugo HS (2009) Phase II randomized study of neoadjuvant everolimus plus letrozole compared with placebo plus letrozole in patients with estrogen receptor-positive breast cancer. J Clin Oncol 27:2630–2637. doi:10.1200/JCO.2008.18.8391

    Article  CAS  PubMed  Google Scholar 

  22. Tabernero J, Rojo F, Calvo E, Burris H, Judson I, Hazell K, Martinelli E, Ramon Y, Cajal S, Jones S, Vidal L, Shand N, Macarulla T, Ramos FJ, Dimitrijevic S, Zoellner U, Tang P, Stumm M, Lane HA, Lebwohl D, Baselga J (2008) Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol 26:1603–1610. doi:10.1200/JCO.2007.14.5482

    Article  CAS  PubMed  Google Scholar 

  23. Hong F, Larrea MD, Doughty C, Kwiatkowski DJ, Squillace R, Slingerland JM (2008) mTOR-raptor binds and activates SGK1 to regulate p27 phosphorylation. Mol Cell 30:701–711. doi:10.1016/j.molcel.2008.04.027

    Article  CAS  PubMed  Google Scholar 

  24. Yu K, Toral-Barza L, Discafani C, Zhang WG, Skotnicki J, Frost P, Gibbons JJ (2001) mTOR, a novel target in breast cancer: the effect of CCI-779, an mTOR inhibitor, in preclinical models of breast cancer. Endocr Relat Cancer 8:249–258

    Article  PubMed  Google Scholar 

  25. Agrawal D, Hauser P, McPherson F, Dong F, Garcia A, Pledger WJ (1996) Repression of p27kip1 synthesis by platelet-derived growth factor in BALB/c 3 T3 cells. Mol Cell Biol 16:4327–4336

    CAS  PubMed  Google Scholar 

  26. Hashemolhosseini S, Nagamine Y, Morley SJ, Desrivieres S, Mercep L, Ferrari S (1998) Rapamycin inhibition of the G1 to S transition is mediated by effects on cyclin D1 mRNA and protein stability. J Biol Chem 273:14424–14429

    Article  CAS  PubMed  Google Scholar 

  27. Tigli H, Buyru N, Dalay N (2005) Molecular analysis of the p27/kip1 gene in breast cancer. Mol Diagn 9:17–21. doi:913

    Article  PubMed  Google Scholar 

  28. Porter PL, Malone KE, Heagerty PJ, Alexander GM, Gatti LA, Firpo EJ, Daling JR, Roberts JM (1997) Expression of cell-cycle regulators p27Kip1 and cyclin E, alone and in combination, correlate with survival in young breast cancer patients. Nat Med 3:222–225

    Article  CAS  PubMed  Google Scholar 

  29. Filipits M, Rudas M, Heinzl H, Jakesz R, Kubista E, Lax S, Schippinger W, Dietze O, Greil R, Stiglbauer W, Kwasny W, Nader A, Stierer M, Gnant MF (2009) Low p27 expression predicts early relapse and death in postmenopausal hormone receptor-positive breast cancer patients receiving adjuvant tamoxifen therapy. Clin Cancer Res. doi:10.1158/1078-0432.CCR-09-0728

    Google Scholar 

  30. Oka K, Suzuki Y, Nakano T (2000) Expression of p27 and p53 in cervical squamous cell carcinoma patients treated with radiotherapy alone: radiotherapeutic effect and prognasis. Cancer 88:2766–2773. doi:10.1002/1097-0142(20000615)88:12<2766::AID-CNCR15>3.0.CO;2-G

    Article  CAS  PubMed  Google Scholar 

  31. Oshita F, Kameda Y, Nishio K, Tanaka G, Yamada K, Nomura I, Nakayama H, Noda K (2000) Increased expression levels of cyclin-dependent kinase inhibitor p27 correlate with good responses to platinum-based chemotherapy in non-small cell lung cancer. Oncol Rep 7:491–495

    CAS  PubMed  Google Scholar 

  32. Carroll JS, Lynch DK, Swarbrick A, Renoir JM, Sarcevic B, Daly RJ, Musgrove EA, Sutherland RL (2003) p27(Kip1) induces quiescence and growth factor insensitivity in tamoxifen-treated breast cancer cells. Cancer Res 63:4322–4326

    CAS  PubMed  Google Scholar 

  33. Nahta R, Takahashi T, Ueno NT, Hung MC, Esteva FJ (2004) P27(kip1) down-regulation is associated with trastuzumab resistance in breast cancer cells. Cancer Res 64:3981–3986. doi:10.1158/0008-5472.CAN-03-3900

    Article  CAS  PubMed  Google Scholar 

  34. Xing H, Wang S, Hu K, Tao W, Li J, Gao Q, Yang X, Weng D, Lu Y, Ma D (2005) Effect of the cyclin-dependent kinases inhibitor p27 on resistance of ovarian cancer multicellular spheroids to anticancer chemotherapy. J Cancer Res Clin Oncol 131:511–519. doi:10.1007/s00432-005-0677-9

    Article  CAS  PubMed  Google Scholar 

  35. Naumann U, Weit S, Rieger L, Meyermann R, Weller M (1999) p27 modulates cell cycle progression and chemosensitivity in human malignant glioma. Biochem Biophys Res Commun 261:890–896. doi:10.1006/bbrc.1999.1126

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We greatly appreciate Li-Juan Lu, Yong Xi, and Yan-Yan Shen for their technical assistance in the animal experiments to evaluate the in vivo anti-tumor activities of rapamycin. This work was supported by the National Science & Technology Major Project “Key New Drug Creation and Manufacturing Program” (2009ZX09301-001 and 2009ZX09102-025), National Natural Science Foundation of China (30721005), and the Science and Technology Commission of Shanghai Municipality Pujiang Talent Program (08PJ14114), grants 07dz05906 and 074319113-2.

Disclosure statement

None declared.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling-Hua Meng or Jian Ding.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 466 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, G., Yang, N., Wang, X. et al. Identification of p27/KIP1 expression level as a candidate biomarker of response to rapalogs therapy in human cancer. J Mol Med 88, 941–952 (2010). https://doi.org/10.1007/s00109-010-0635-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-010-0635-0

Keywords

Navigation