Skip to main content
Log in

Development and optimization of a new formaldehyde-free cornstarch and tannin wood adhesive

Entwicklung und Optimierung eines neuen, formaldehydfreien Holzklebstoffes auf Maisstärke- und Tanninbasis

  • Originals Originalarbeiten
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

The development and optimization of a new, environment-friendly adhesive made from abundant and renewable cornstarch and tannin is described in this study. At present, the production of wood composites mainly relies on petrochemical- and formaldehyde-based adhesives such as phenol-formaldehyde (PF) resins and urea-formaldehyde (UF) resins. Formaldehyde-free cornstarch plus tannin adhesives were evaluated for mechanical and physical properties (shear strength, rheological characterisation and thermogravimetric analysis).

First, optimized conditions for the preparation of cornstarch-sodium hydroxide wood adhesives were determined. The parameters studied were the following: total solids content of the adhesives, sodium hydroxide concentration and sodium hydroxide/cornstarch volume ratio. The highest shear strength results appeared to be 0.5 sodium hydroxide/cornstarch volume ratio when using concentrations of cornstarch (65% p/v H2O) and sodium hydroxide (33% p/v H2O). The optimum cure temperature was 170 °C and the cure time 4 min. The addition of two types of tannin-based adhesives, Mimosa and Quebracho, with hexamethylenetetramine (hexamine) hardener to the cornstarch-sodium hydroxide formulation improved the shear strength and decreased the viscosity of adhesives.

Zusammenfassung

In dieser Studie wird die Entwicklung und Optimierung eines neuen, umweltfreundlichen Klebstoffes auf Basis der nachwachsenden und reichlich vorhandenen Rohstoffe Maisstärke und Tannin beschrieben. Gegenwärtig werden zur Herstellung von Holzwerkstoffen Klebstoffe auf Öl- und Formaldehydbasis, wie z. B. Phenolformaldehyd-Harz (PF) und Harnstoffformaldehyd-Harz (UF), verwendet. Die mechanischen und physikalischen Eigenschaften (Scherfestigkeit, rheologische Eigenschaften und thermogravimetrische Analyse) von Klebstoffen auf Maisstärke und Tanninbasis wurden untersucht.

Zunächst wurden die optimalen Bedingungen zur Herstellung von Maisstärke-Natriumhydroxid-Holzklebstoffen bestimmt. Dabei wurden die Parameter Gesamt-Feststoffgehalt der Klebstoffe, Natriumhydroxidkonzentration und das Volumenverhältnis von Hydroxid und Maisstärke untersucht. Die höchste Scherfestigkeit ergab sich bei einem Volumenverhältnis von 0,5 bei einer Maisstärkekonzentration von 65% p/v H2O und einer Natriumhydroxidkonzentration von 33% p/v H2O. Die optimale Aushärtungstemperatur lag bei 170 °C und die Aushärtungszeit bei 4 min. Durch Zugabe zweier verschiedener Tannin basierter Klebstoffe, Mimosa und Quebracho, mit Hexamin als Härter, zur Maisstärke-Natriumhydroxid-Rezeptur wurde die Scherfestigkeit verbessert und die Viskosität der Klebstoffe verringert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AFNOR (1996) Norme NF EN 113: Produits de préservation du bois. Méthode d’essai pour déterminer l’efficacité protectrice vis-à-vis les champignons basidiomycètes lignivores. Détermination du seuil d’efficacité

  2. BS 1204: Part 2 (1965) Synthetic resin adhesives (phenolic and aminoplastic) for wood. Specification for close-contact adhesives British Standards Institution

  3. Cardoso MB (2007) From rice starch to amylose crystals: alkaline extraction of rice starch, solution properties of amylose and crystal structure of v-amylose inclusion complexes. Université Joseph Fourier, Grenoble I

    Google Scholar 

  4. Cetin NS, Ozmen N (2002) Use of organosolv lignin in phenol-formaldehyde resins for particleboard production. II. Particleboard production and properties. Int J Adhes Adhes 22:481–486

    Article  CAS  Google Scholar 

  5. Champagne ET, Rao RM, Liuzzo JA, Robinson W, Gale RJ, Miller F (1985) Solubility behaviors of the minerals, proteins, and phytic acid in rice bran with time, temperature, and pH. Cereal Chem 62:218–222

    CAS  Google Scholar 

  6. Conner AH (1989) Carbohydrates in adhesives: introduction and historical perspective. ACS Symp Ser 385:271–288

    Article  CAS  Google Scholar 

  7. Conner AH, Lorenz LF, River BH (1989) Carbohydrate-modified-phenol-formaldehyde resins formulated at neutral conditions. ACS Symp Ser 385:355–369

    Article  CAS  Google Scholar 

  8. Custers PAJL, Rushbrook R, Pizzi A, Knauff CJ (1979) Industrial applications of wattle-tannin/urea-formaldehyde fortified starch adhesives for damp-proof corrugated cardboard. Holzforsch Holzverw 31(6):131–133

    CAS  Google Scholar 

  9. Imam SH, Mao L, Chen L, Greene RV (1999) Wood adhesive from crosslinked poly(vinyl alcohol) and partially gelatinized starch: preparation and properties. Starch/Stärke 51(6):225–229

    Article  CAS  Google Scholar 

  10. Kamoun C, Pizzi A, Zanetti M (2003) Upgrading melamine-urea-formaldehyde polycondensation resins with buffering additives. I. The effect of hexamine sulfate and its limits. J Appl Polym Sci 90:203–214

    Article  CAS  Google Scholar 

  11. Keith IH, Telliard WI (1979) Priority pollutants. Environ Sci Technol 13:416–23

    Article  Google Scholar 

  12. Kennedy HM (1989) Starch- and dextrin-based adhesives. In: Hemingway RW, Conner AH (eds) Adhesives from Renewable Resources. American Chemical Society, Washington, DC, pp 326–335

    Chapter  Google Scholar 

  13. Leach VHW, Schoch TJ, Chessman EF (1961) Adsorption von Alkalien durch das Stärkekorn. Stärke 13(6):200–203

    Article  CAS  Google Scholar 

  14. Li J, Maplesden F (1998) Commercial production of tannins from radiata pine bark for wood adhesives. IPENZ Transactions, Vol. 25, No. 1/EMCh, 1998

  15. Li K, Geng X, Simonsen J, Karchesy J (2004) Novel wood adhesives from condensed tannins and polyethylenimine. Int J Adhes Adhes 24:327–333

    Article  Google Scholar 

  16. McKenzie AW, Yuritta JP (1972) Starch tannin corrugating adhesives. Appita 26(1):30–34

    CAS  Google Scholar 

  17. Meyer B, Andrews BAK, Reinhardt RM (1986a) European formaldehyde regulations: a french view. In: Coutrot D (ed) Formaldehyde release from wood products. ACS Symp Ser 385:209–216

    Google Scholar 

  18. Meyer B, Andrews BAK, Reinhardt RM (1986b) Formaldehyde release from wood panel products bonded with phenol from aldehyde adhesives. In: Emery JA (ed) Formaldehyde release from wood products. ACS Symp Ser 385:26–39

    Google Scholar 

  19. Meyer B, Andrews BAK, Reinhardt RM (1986c) Formaldehyde release rate coefficients from selected consumer products. In: Pickrell JA, Griffis LC, Mokler BV, Hobbs CH, Kanapilly GM, Bathija A (eds) Formaldehyde release from wood products. ACS Symp Ser 385:40–51

    Google Scholar 

  20. Mozaffar AK, Sayed Marghoob A, Ved Prakash M (2004) Development and characterization of a wood adhesive using bagasse lignin. Int J Adhes Adhes 24:485–493

    Google Scholar 

  21. Myers GE (1986) Resin hydrolysis and mechanism of formaldehyde release from bonded wood products. In: Wood adhesives in 1985: status and needs. Forest products Research Society, Madison, WI, pp 77–80

    Google Scholar 

  22. Nihat SC, Nilgül Ö (2002) Use of organosolv lignin in phenol-formaldehyde resins for particleboard production. I. Organosolv lignin modified resins. Int J Adhes Adhes 22(6):477–480

    Google Scholar 

  23. Pichelin F, Kamoun C, Pizzi A (1999) Hexamine hardener behaviour: effects on wood glueing, tannin and other wood adhesives. Holz Roh- Werkst 57(5):305–317

    Article  CAS  Google Scholar 

  24. Pizzi A (1977) Hot-setting tannin-urea-formaldehyde exterior wood adhesives. Adhes Age 20:27–35

    CAS  Google Scholar 

  25. Pizzi A (1994) Advanced wood adhesives technology. M. Dekker, New York

    Google Scholar 

  26. Pizzi A (2006) Recent developments in eco-efficient bio-based adhesives for wood bonding: opportunities and issues. J Adhes Sci Technol 20(8):829–846

    Article  CAS  Google Scholar 

  27. Pizzi A, Tekely P (1995) Mechanism of polyphenolic tannin resin hardening by hexamethylenetetramine: CP-MAS 13C NMR. J Appl Polym Sci 56:1645–1650

    Article  CAS  Google Scholar 

  28. Pizzi A, Tekely P (1996) Hardening mechanisms by hexamethylenetetramine of fast-reacting phenolic wood adhesives – a CPMAS 13C NMR study. Holzforschung 50:277–281

    Article  CAS  Google Scholar 

  29. Pizzi A, Roll W, Dombo B (1996) Hitzehärtende Bindemittel. USA patent 5,532,330

  30. Saayman HM, Brown CH (1977) Wattle-base tannin-starch adhesives for corrugated containers. For Prod J 27(4):21–25

    CAS  Google Scholar 

  31. Tako M, Hizukuri S (2002) Gelatinization mechanism of potato starch. Carbohyd Res 48:397–401

    Article  CAS  Google Scholar 

  32. Thompson GE (1991) Demethyllated kraft lignin as a substitute for phenol in wood adhesives. M.Sc. Thesis. Colorado State University

  33. Yamamoto H, Makita E, Oki Y, Otani M (2006) Flow characteristics and gelatinization kinetics of rice starch under strong alkali conditions. Food Hydrocoll 20:9–20

    Article  CAS  Google Scholar 

  34. Yazaki Y, Collins PJ (1997) Uses of Wattle Extract: Tannin Based Adhesives. Rural Industries Research and Development Corporation. RIRDC Publication No 97/72, Chapt 15, pp 127–143

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Moubarik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moubarik, A., Charrier, B., Allal, A. et al. Development and optimization of a new formaldehyde-free cornstarch and tannin wood adhesive . Eur. J. Wood Prod. 68, 167–177 (2010). https://doi.org/10.1007/s00107-009-0357-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-009-0357-6

Keywords

Navigation