Skip to main content
Log in

Die Entstehung und Behandlung der Presbyakusis

Heutiger Stand und Perspektiven für die Zukunft

Pathogenesis and treatment of presbyacusis

Current status and future perspectives

  • HNO-Praxis
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Neben endogenen und exogenen Ursachen können „physiologische Alterungsprozesse“ zur Abnahme des Hörvermögens führen. Zu den wichtigsten exogenen Faktoren werden in Industrieländern Lärm und Überernährung gezählt. Als Auslöser der Presbyakusis werden Hypoxie/Ischämie, Radikalbildung und oxidativer Stress, apoptotischer und nekrotischer Zelltod von Haarzellen und Spiralganglien sowie vererbte bzw. erworbene Mutationen der mitochondrialen DNA diskutiert.

Therapeutisch steht zzt. eine möglichst frühzeitige und beidseitige Versorgung mit Hörgeräten an erster Stelle, um die Kommunikation zu verbessern und die Hörbahn mit akustischen Signalen zu versorgen. Hierdurch kann auch die Detektionsschwelle eines bestehenden Tinnitussignals angehoben werden. Verschiedene pharmakologisch orientierte Behandlungsstrategien werden zzt. diskutiert. Um Schaden durch oxidativen Stress zu vermeiden oder zu mindern, kommen die Gabe von Antioxidanzien oder eine Kalorienreduzierung in der Nahrung in Betracht. Ein weiterer Ansatz wäre die Überexpression oder die Modulation der Superoxiddismutase 2 (SOD2) in der Kochlea, da tierexperimentell eine starke Abnahme der SOD2 im Alter nachgewiesen wurde. Technisch könnte dieser therapeutische Ansatz durch einen adenoviral vermittelten Gentransfer realisiert werden. Schließlich bietet die Haarzellregeneration eine Möglichkeit zur Behandlung der Presbyakusis in der Zukunft.

Abstract

Factors responsible for presbyacusis include physiological ageing processes as well as endogenous or exogenous causes. In the industrial countries, two main exogenous causes are exposure to loud noise and obesity. Pathomechanisms contributing to presbyacusis are hypoxia/ischemia, reactive species formation and oxidative stress, apoptotic and necrotic death of hair cells and spiral ganglion cells as well as inherited and acquired mutations in the mitochondrial DNA.

Important for the successful treatment of presbyacusis is a timely fitting of hearing aids on both ears to improve communication and provide the auditory system with acoustic information. Using the hearing aids will also elevate the detection threshold of an existing tinnitus signal. At present, several therapeutic strategies based on pharmacological intervention are under discussion. The application of antioxidants or caloric restriction are considered to prevent or reduce oxidative stress-induced damage. Animal experiments evidenced that superoxide dismutase 2 (SOD2) strongly decreases in age; thus, a further approach may be the overexpression or modulation of the SOD2 within the cochlea. Adenoviral-mediated gene transfer technology would be a tempting approach to address this type of therapy. Finally, hair cell regeneration could be a possible treatment of presbyacusis in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Andreeva N, Nyamaa A, Haupt H et al. (2006) Recombinant human erythropoietin prevents ischemia-induced apoptosis and necrosis in explant cultures of the rat organ of Corti. Neurosci Lett 396: 86–90

    Article  CAS  PubMed  Google Scholar 

  2. Böhme G (1996) Presbyakusis. In: Berghaus A, Rettinger G, Böhme G (Hrsg) Hals-Nasen-Ohren-Heilkunde. Hippokrates, Stuttgart, S 171–173

  3. Canterbury DR (1978) Public health audiology in rural Alaska: an interagency approach. ASHA 20: 887–890

    CAS  PubMed  Google Scholar 

  4. Caspary DM, Holder TM, Hughes LF et al. (1999) Age-related changes in GABA(A) receptor subunit composition and function in rat auditory system. Neuroscience 93: 307–312

    Article  CAS  PubMed  Google Scholar 

  5. Caspary DM, Milbrandt JC, Helfert RH (1995) Central auditory aging: GABA changes in the inferior colliculus. Exp Gerontol 30: 349–360

    Article  CAS  PubMed  Google Scholar 

  6. Cransac H, Peyrin L, Cottet-Emard JM et al. (1996) Aging effects on monoamines in rat medial vestibular and cochlear nuclei. Hear Res 100: 150–156

    Article  CAS  PubMed  Google Scholar 

  7. Eggermont JJ (2005) Tinnitus: neurobiological substrates. Drug Discov Today 10: 1283–1290

    Article  PubMed  Google Scholar 

  8. Evans P, Halliwell B (1999) Free radicals and hearing. Cause, consequence, and criteria. Ann N Y Acad Sci 884: 19–40

    Article  CAS  PubMed  Google Scholar 

  9. Gates GA, Mills JH (2005) Presbycusis. Lancet 366: 1111–1120

    Article  PubMed  Google Scholar 

  10. Gross J (2005) Molekulare Grundlagen von Hypoxie und Asphyxie. In: Ganten D, Ruckpaul K (Hrsg) Molekularmedizinische Grundlagen von fetalen und neonatalen Erkrankungen. Springer, Berlin Heidelberg, S 573–605

  11. Herrera AJ, Machado A, Cano J (1991) The influence of age on neurotransmitter turnover in the rat’s superior colliculus. Neurobiol Aging 12: 289–294

    Article  CAS  PubMed  Google Scholar 

  12. Hesse G (2004) Hörgeräte im Alter. Warum ist die Versorgung so schwierig? HNO 52: 321–328

    Article  CAS  PubMed  Google Scholar 

  13. Hesse G, Laubert A (2001) Tinnitus-Retraining-Therapie. Indikation und Behandlungsziele. HNO 49: 764–777

    Article  CAS  PubMed  Google Scholar 

  14. Holmes C, Arranz MJ, Powell JF et al. (1998) 5-HT2A and 5-HT2C receptor polymorphisms and psychopathology in late onset Alzheimer’s disease. Hum Mol Genet 7: 1507–1509

    Article  CAS  PubMed  Google Scholar 

  15. Hu BH, Guo W, Wang PY et al. (2000) Intense noise-induced apoptosis in hair cells of guinea pig cochleae. Acta Otolaryngol 120: 19–24

    Article  CAS  PubMed  Google Scholar 

  16. Hu BH, Henderson D, Nicotera TM (2002) Involvement of apoptosis in progression of cochlear lesion following exposure to intense noise. Hear Res 166: 62–71

    Article  PubMed  Google Scholar 

  17. Jiang H, Talaska AE, Schacht J et al. (2007) Oxidative imbalance in the aging inner ear. Neurobiol Aging 28: 1605–1612

    Article  CAS  PubMed  Google Scholar 

  18. Johnsson LG, Hawkins JE Jr (1972) Vascular changes in the human inner ear associated with aging. Ann Otol Rhinol Laryngol 81: 364–376

    CAS  PubMed  Google Scholar 

  19. Kawamoto K, Sha SH, Minoda R et al. (2004) Antioxidant gene therapy can protect hearing and hair cells from ototoxicity. Mol Ther 9: 173–181

    Article  CAS  PubMed  Google Scholar 

  20. Kokotas H, Petersen MB, Willems PJ (2007) Mitochondrial deafness. Clin Genet 71: 379–391

    Article  CAS  PubMed  Google Scholar 

  21. Kopke R, Allen KA, Henderson D et al. (1999) A radical demise. Toxins and trauma share common pathways in hair cell death. Ann N Y Acad Sci 884: 171–191

    Article  CAS  PubMed  Google Scholar 

  22. Kujoth GC, Hiona A, Pugh TD et al. (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309: 481–484

    Article  CAS  PubMed  Google Scholar 

  23. Le T, Keithley EM (2007) Effects of antioxidants on the aging inner ear. Hear Res 226: 194–202

    Article  CAS  PubMed  Google Scholar 

  24. Ledoux SP, Druzhyna NM, Hollensworth SB et al. (2007) Mitochondrial DNA repair: a critical player in the response of cells of the CNS to genotoxic insults. Neuroscience 145: 1249–1259

    Article  CAS  PubMed  Google Scholar 

  25. Lee HC, Wei YH (2007) Oxidative stress, mitochondrial DNA mutation, and apoptosis in aging. Exp Biol Med (Maywood) 232: 592–606

    Google Scholar 

  26. Lefebvre PP, Malgrange B, Lallemend F et al. (2002) Mechanisms of cell death in the injured auditory system: otoprotective strategies. Audiol Neurootol 7: 165–170

    Article  CAS  PubMed  Google Scholar 

  27. Lehnhardt E, Koch T (1994) Altersschwerhörigkeit. In: Naumann HH, Helms J, Herberhold C, Kastenbauer E (Hrsg) Oto-Rhino-Laryngologie in Klinik und Praxis. Band 1 Ohr. Thieme, Stuttgart, S 778–782

  28. Lustig LR (2006) Nicotinic acetylcholine receptor structure and function in the efferent auditory system. Anat Rec A Discov Mol Cell Evol Biol 288: 424–434

    PubMed  Google Scholar 

  29. Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146: 3–15

    CAS  PubMed  Google Scholar 

  30. Mazurek B, Rheinlander C, Fuchs FU et al. (2006) Einfluss von Ischämie/Hypoxie auf die HIF-1-Aktivität und Expression von hypoxieabhängigen Genen in der Kochlea der neugeborenen Ratte. HNO 54: 689–697

    Article  CAS  PubMed  Google Scholar 

  31. Mazurek B, Winter E, Fuchs J et al. (2003) Susceptibility of the hair cells of the newborn rat cochlea to hypoxia and ischemia. Hear Res 182: 2–8

    Article  PubMed  Google Scholar 

  32. Mukherjee J, Christian BT, Dunigan KA et al. (2002) Brain imaging of 18F-fallypride in normal volunteers: blood analysis, distribution, test-retest studies, and preliminary assessment of sensitivity to aging effects on dopamine D-2/D-3 receptors. Synapse 46: 170–188

    Article  CAS  PubMed  Google Scholar 

  33. Nelson EG, Hinojosa R (2006) Presbycusis: a human temporal bone study of individuals with downward sloping audiometric patterns of hearing loss and review of the literature. Laryngoscope 116: 1–12

    Article  PubMed  Google Scholar 

  34. Oliveira JR, Zatz M (1999) The study of genetic polymorphisms related to serotonin in Alzheimer’s disease: a new perspective in a heterogenic disorder. Braz J Med Biol Res 32: 463–467

    CAS  PubMed  Google Scholar 

  35. Pickles JO (2004) Mutation in mitochondrial DNA as a cause of presbyacusis. Audiol Neurootol 9: 23–33

    Article  CAS  PubMed  Google Scholar 

  36. Prazma J, Carrasco VN, Butler B et al. (1990) Cochlear microcirculation in young and old gerbils. Arch Otolaryngol Head Neck Surg 116: 932–936

    CAS  PubMed  Google Scholar 

  37. Ries PW (1994) Prevalence and characteristics of persons with hearing trouble: United States, 1990–1991. Series 10: Data From the National Health Survey, No 188, US Department of Health and Human Services, Publication No. (PHS) 94-1516, Hyattsville, MD, pp 1–75

    Google Scholar 

  38. Riva C, Donadieu E, Magnan J et al. (2007) Age-related hearing loss in CD/1 mice is associated to ROS formation and HIF target proteins up-regulation in the cochlea. Exp Gerontol 42: 327–336

    Article  CAS  PubMed  Google Scholar 

  39. Rosen S, Bergman M, Plester D et al. (1962) Presbycusis study of a relatively noise-free population in the Sudan. Ann Otol Rhinol Laryngol 71: 727–743

    CAS  PubMed  Google Scholar 

  40. Salvinelli F, Casale M, Paparo F et al. (2003) Subjective tinnitus, temporomandibular joint dysfunction, and serotonin modulation of neural plasticity: causal or casual triad? Med Hypotheses 61: 446–448

    Article  CAS  PubMed  Google Scholar 

  41. Schacht J, Hawkins JE (2005) Sketches of otohistory. Part 9: presby[a]cusis. Audiol Neurootol 10: 243–247

    Article  PubMed  Google Scholar 

  42. Schuknecht HF (1964) Further observations on the pathology of presbycusis. Arch Otolaryngol Head Neck Surg 80: 369–382

    CAS  Google Scholar 

  43. Seidman MD (2000) Effects of dietary restriction and antioxidants on presbyacusis. Laryngoscope 110: 727–738

    Article  CAS  PubMed  Google Scholar 

  44. Seidman MD, Ahmad N, Bai U (2002) Molecular mechanisms of age-related hearing loss. Ageing Res Rev 1: 331–343

    Article  CAS  PubMed  Google Scholar 

  45. Someya S, Yamasoba T, Weindruch R et al. (2007) Caloric restriction suppresses apoptotic cell death in the mammalian cochlea and leads to prevention of presbycusis. Neurobiol Aging 28: 1613–1622

    Article  PubMed  Google Scholar 

  46. Soucek S, Michaels L, Frohlich A (1987) Pathological changes in the organ of Corti in presbyacusis as revealed by microslicing and staining. Acta Otolaryngol Suppl 436: 93–102

    Article  CAS  PubMed  Google Scholar 

  47. Tadros SF, D’Souza M, Zettel ML et al. (2007) Glutamate-related gene expression changes with age in the mouse auditory midbrain. Brain Res 1127: 1–9

    Article  CAS  PubMed  Google Scholar 

  48. Takumida M, Anniko M (2005) Radical scavengers: a remedy for presbyacusis. A pilot study. Acta Otolaryngol 125: 1290–1295

    Article  CAS  PubMed  Google Scholar 

  49. Thumfart WF, Welleschick B, Gunkel AR (1996) Erkrankungen des Innenohres – Otoneurologie. In: Ganz H, Jahnke V (Hrsg) Hals-Nasen-Ohren-Heilkunde. Walter de Gruyter, Berlin, S 83–105

  50. Uhlmann RF, Larson EB, Rees TS et al. (1989) Relationship of hearing impairment to dementia and cognitive dysfunction in older adults. JAMA 261: 1916–1919

    Article  CAS  PubMed  Google Scholar 

  51. Venero JL, Roza C de la, Machado A et al. (1993) Age-related changes on monoamine turnover in hippocampus of rats. Brain Res 631: 89–96

    Article  CAS  PubMed  Google Scholar 

  52. Venero JL, Machado A, Cano J (1991) Age effects on monoamine turnover of the rat substantia nigra. Brain Res 557: 109–114

    Article  CAS  PubMed  Google Scholar 

  53. Volkow ND, Fowler JS, Wang GJ et al. (1994) Decreased dopamine transporters with age in health human subjects. Ann Neurol 36: 237–239

    Article  CAS  PubMed  Google Scholar 

  54. Willott JF (1999) Neurogerontology: Aging and the nervous system. Springer, New York

  55. Willott JF, Hnath CT, Lister JJ (2001) Modulation of presbycusis: current status and future directions. Audiol Neurootol 6: 231–249

    Article  CAS  PubMed  Google Scholar 

  56. Wright A, Davis A, Bredberg G et al. (1987) Hair cell distributions in the normal human cochlea. A report of a European working group. Acta Otolaryngol Suppl 436: 15–24

    Article  CAS  PubMed  Google Scholar 

  57. Yamasoba T, Kondo K (2006) Supporting cell proliferation after hair cell injury in mature guinea pig cochlea in vivo. Cell Tissue Res 325: 23–31

    Article  PubMed  Google Scholar 

  58. Yamasoba T, Someya S, Yamada C et al. (2007) Role of mitochondrial dysfunction and mitochondrial DNA mutations in age-related hearing loss. Hear Res 226: 185–193

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Mazurek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazurek, B., Stöver, T., Haupt, H. et al. Die Entstehung und Behandlung der Presbyakusis. HNO 56, 429–435 (2008). https://doi.org/10.1007/s00106-008-1676-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-008-1676-3

Schlüsselwörter

Keywords

Navigation