Skip to main content
Log in

Einfluss von Ischämie/Hypoxie auf die HIF-1-Aktivität und Expression von hypoxieabhängigen Genen in der Kochlea der neugeborenen Ratte

Influence of ischemia/hypoxia on the HIF-1 activity and expression of hypoxia-dependent genes in the cochlea of the newborn rat

  • Originalien
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Der Transkriptionsfaktor HIF-1 („hypoxia-inducible factor-1“) reguliert unter Ischämie/Hypoxie die Expression von Genen für Glukoseversorgung, Wachstum, Stoffwechsel, Redoxreaktionen und Durchblutung. Im Hinblick auf Tinnitus und Schwerhörigkeit wurden HIF-1-Aktivität und Expression von HIF-1-abhängigen Genen in der Kochlea unter Ischämie/Hypoxie untersucht.

Material/Methoden

HIF-1 wurde in einer Einzelzellkultur der Regionen Corti-Organ (OC), Stria vascularis (SV) und Modiolus (MOD), die mRNA-Expression in der organotypischen Kultur mittels Microarray-Technik (RN U34-Chip, Affymetrix) bestimmt.

Ergebnisse

Ischämie (Hypoxie + Glukosemangel) führt zu einer ähnlichen HIF-1-Aktivierung wie reine Hypoxie mit dem höchsten Anstieg im MOD und OC. Der HIF-1α-mRNA-Gehalt ist in der SV höher als im OC und MOD. Während der Kultivierung werden HIF-1α-mRNA und zahlreiche HIF-1-abhängige Gene wie Gapdh/“Glyceraldehyde-3-phosphate dehydrogenase“, Slc2a1/“Solute carrier family 2 (facilitated glucose transporter), member 1“, Tf/Transferrin und Tfrc/Transferrin Rezeptor in allen 3 Regionen hochreguliert. In SV, MOD und OC erfolgt eine besonders hohe Zunahme der Expression von Hmox1/Hämoxygenase 1, Nos2/induzierbare Stickstoffmonoxid-Synthase und Tfrc. Hypoxie (5 h) führt zu einer Erhöhung der Expression von Igf2/“insulin-like growth factor 2“.

Fazit

Die Daten unterstreichen die Bedeutung radikalbildender Prozesse für die Innenohrschädigung. Die organotypische Kultur geht möglicherweise mit einer Hypoxie einher.

Abstract

Background

Transcription factor HIF-1 (hypoxia-inducible factor-1) regulates the expression of genes which are involved in glucose supply, growth, metabolism, redox reactions and blood supply. Hypoxia and ischemia play an important role in the pathogenesis of tinnitus and hearing loss. Therefore, HIF-1 activity and the expression of HIF-1 dependent genes in the cochlea were examined under ischemic and hypoxic conditions.

Material and methods

For the HIF-1 analysis, single-cell cultures of the organ of Corti (OC), stria vascularis (SV) and modiolus (MOD) were used. mRNA expression was analyzed in the organotypic culture using a microarray technique (RN U34-chip, Affymetrix).

Results

Ischemia (hypoxia without glucose) and pure hypoxia increase the HIF-1 activity identically, with the highest increase found in MOD and OC. The HIF-1 α mRNA levels were found to be higher in SV than in the OC and MOD. During culturing, there is a clear increase in HIF-1 α mRNA and the expression of a number of HIF-1 dependent genes, such as Gapdh/glyceraldehyde-3-phosphate dehydrogenase, Slc2a1/solute carrier family 2 (facilitated glucose transporter), member 1, Tf/transferrin and Tfrc/transferrin receptor, in all three regions. In SV, MOD and OC, increase in the expression of Hmox1/hemoxygenase 1, Nos2/nitric oxide synthase, inducible and Tfrc is particularly high. Hypoxia (5 h) results in an increased expression of Igf2/Insulin-like growth factor 2.

Conclusion

The present data underline the contribution of radical forming processes to the pathogenesis of inner ear diseases. For experimental research, it is important to note that organotypic culture may be coupled with hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Abe S, Katagiri T, Saito-Hisaminato A, Usami S, Inoue Y, Tsunoda T, Nakamura Y (2003) Identification of CRYM as a candidate responsible for nonsyndromic deafness, through cDNA microarray analysis of human cochlear and vestibular tissues. Am J Hum Genet 72: 73–82

    Article  PubMed  Google Scholar 

  2. Chauhan A, Chauhan V, Brown WT, Cohen I (2004) Oxidative stress in autism: increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin--the antioxidant proteins. Life Sci 75: 2539–2549

    Article  PubMed  Google Scholar 

  3. Chesik D, Glazenburg K, Wilczak N, Geeraedts F, De Keyser J (2004) Insulin-like growth factor binding protein-1–6 expression in activated microglia. Neuroreport 15: 1033–1037

    Article  PubMed  Google Scholar 

  4. Duan M, Qiu J, Laurell G, Olofsson A, Counter SA, Borg E (2004) Dose and time-dependent protection of the antioxidant N-L-acetylcysteine against impulse noise trauma. Hear Res 192: 1–9

    Article  PubMed  Google Scholar 

  5. Ebert BL, Bunn HF (1998) Regulation of transcription by hypoxia requires a multiprotein complex that includes hypoxia-inducible factor 1, an adjacent transcription factor, and p300/CREB binding protein. Mol Cell Biol 18: 4089–4096

    Google Scholar 

  6. Eckel HE, Richling F, Streppel M, Roth B, Walger M, Zorowka P (1998) Ätiologie mittel- und hochgradiger Schwerhörigkeiten im Kindesalter. HNO 46: 252–263

    Article  PubMed  Google Scholar 

  7. Edge RM, Evans BN, Pearce M, Richter CP, Hu X, Dallos P (1998) Morphology of the unfixed cochlea. Hear Res 124: 1–16

    Article  PubMed  Google Scholar 

  8. Feldser D, Agani F, Iyer NV, Pak B, Ferreira G, Semenza GL (1999) Reciprocal positive regulation of hypoxia-inducible factor 1alpha and insulin-like growth factor 2. Cancer Res 59: 3915–3918

    PubMed  Google Scholar 

  9. Fessenden JD, Schacht J (1998) The nitric oxide/cyclic GMP pathway: a potential major regulator of cochlear physiology. Hear Res 118: 168–176

    Article  PubMed  Google Scholar 

  10. Gross J (2005) Molekulare Grundlagen von Hypoxie und Asphyxie. In: Ganten D, Ruckpaul K (Hrsg) Molekulare Grundlagen von Hypoxie und Asphyxie. Springer, Berlin Heidelberg New York, S 573–605

  11. Gross J, Rheinlander C, Fuchs J, Mazurek B, Machulik A, Andreeva N, Kietzmann T (2003) Expression of hypoxia-inducible factor-1 in the cochlea of newborn rats. Hear Res 183: 73–83

    Article  PubMed  Google Scholar 

  12. Gross M, Finckh-Kramer U, Spormann-Lagodzinski M (2000) Angeborene Erkrankungen des Hörvermögens bei Kindern. Teil 1: Erworbene Hörstörungen. HNO 48: 879–886

    Article  PubMed  Google Scholar 

  13. Gu YZ, Moran SM, Hogenesch JB, Wartman L, Bradfield CA (1998) Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. Gene Expr 7: 205–213

    PubMed  Google Scholar 

  14. Ito M, Spicer SS, Schulte BA (1993) Immunohistochemical localization of brain type glucose transporter in mammalian inner ears: comparison of developmental and adult stages. Hear Res 71: 230–238

    Article  PubMed  Google Scholar 

  15. Kietzmann T, Cornesse Y, Brechtel K, Modaressi S, Jungermann K (2001) Perivenous expression of the mRNA of the three hypoxia-inducible factor alpha-subunits, HIF1alpha, HIF2alpha and HIF3alpha, in rat liver. Biochem J 354: 531–537

    Article  PubMed  Google Scholar 

  16. Kietzmann T, Krones-Herzig A, Jungermann K (2002) Signaling cross-talk between hypoxia and glucose via hypoxia-inducible factor 1 and glucose response elements. Biochem Pharmacol 64: 903–911

    Article  PubMed  Google Scholar 

  17. Lamm K (1999) Ist eine durchblutungsfördernde Therapie bei cochleo-vestibulären Funktionsstörungen wirksam? HNO 47: 155–156

    Article  PubMed  Google Scholar 

  18. Mazurek B, Winter E, Fuchs J, Haupt H, Gross J (2003) Susceptibility of the hair cells of the newborn rat cochlea to hypoxia and ischemia. Hear Res 182: 2–8

    Article  PubMed  Google Scholar 

  19. Moos T, Morgan EH (2002) A morphological study of the developmentally regulated transport of iron into the brain. Dev Neurosci 24: 99–105

    Article  PubMed  Google Scholar 

  20. Ricort JM, Binoux M (2002) Insulin-like growth factor-binding protein-3 activates a phosphotyrosine phosphatase. Effects on the insulin-like growth factor signaling pathway. J Biol Chem 277: 19448–19454

    Article  PubMed  Google Scholar 

  21. Semenza GL (1999) Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 15: 551–578

    Article  PubMed  Google Scholar 

  22. Semenza GL (2000) Surviving ischemia: adaptive responses mediated by hypoxia-inducible factor 1. J Clin Invest 106: 809–812

    PubMed  Google Scholar 

  23. Staecker H, Van De Water TR (1998) Factors controlling hair-cell regeneration/repair in the inner ear. Curr Opin Neurobiol 8: 480–487

    Article  PubMed  Google Scholar 

  24. Tian H, Hammer RE, Matsumoto AM, Russell DW, McKnight SL (1998) The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev 12: 3320–3324

    PubMed  Google Scholar 

  25. Watanabe K, Oshima T, Kobayashi T, Ikeda K (2003) The expression and localization of heme oxygenase in the adult guinea pig cochlea. Brain Res 966: 162–166

    Article  PubMed  Google Scholar 

  26. Wollenberg B (2004) Wertigkeit der Tissue-Microarray-Technik. HNO 52: 394

    Article  PubMed  Google Scholar 

  27. Yamashita K, Discher DJ, Hu J, Bishopric NH, Webster KA (2001) Molecular regulation of the endothelin-1 gene by hypoxia. Contributions of hypoxia-inducible factor-1, activator protein-1, GATA-2, AND p300/CBP. J Biol Chem 276: 12645–12653

    Article  PubMed  Google Scholar 

  28. Yoshihara T, Satoh M, Yamamura Y, Itoh H, Ishii T (1999) Ultrastructural localization of glucose transporter 1 (GLUT1) in guinea pig stria vascularis and vestibular dark cell areas: an immunogold study. Acta Otolaryngol 119: 336–340

    Article  PubMed  Google Scholar 

  29. Zheng JL, Helbig C, Gao WQ (1997) Induction of cell proliferation by fibroblast and insulin-like growth factors in pure rat inner ear epithelial cell cultures. J Neurosci 17: 216–226

    PubMed  Google Scholar 

Download references

Interessenkonflikt:

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Gross.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazurek, B., Rheinländer, C., Fuchs, FU. et al. Einfluss von Ischämie/Hypoxie auf die HIF-1-Aktivität und Expression von hypoxieabhängigen Genen in der Kochlea der neugeborenen Ratte. HNO 54, 689–697 (2006). https://doi.org/10.1007/s00106-005-1371-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-005-1371-6

Schlüsselwörter

Keywords

Navigation