Skip to main content
Log in

Apoptose als Pathomechanismus in der Sepsis

  • Intensivmedizin
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Die Sepsis gehört nach wie vor zu den häufigsten Todesursachen bei Intensivpatienten. Der Pathogenese der Erkrankung liegt ein komplexes Immungeschehen zugrunde. Neueste Erkenntnisse zeigen, dass Zellen des Abwehrsystems bei der Sepsis im Rahmen der Immunantwort häufig eine Signalkaskade aktivieren, die zum programmierten Zelltod, der sog. Apoptose, führt. Apoptose von Leukozyten wurde sowohl im Tiermodell als auch bei Patienten mit Sepsis beobachtet. Bei der Regulation der Apoptose spielen das mitochondriale Protein Bcl-2 und die zytoplasmatische Enzymkaskade der Kaspasen eine wesentliche Rolle. Durch Überexprimierung von Bcl-2 oder Hemmung der Kaspasen konnte im Tiermodell der Sepsis ein deutlicher Überlebensvorteil demonstriert werden. Erste Arbeiten zeigten auch die Relevanz der Apoptose bei Patienten mit schwerer Sepsis. Ziel aktueller Forschung auf diesem Gebiet ist es, durch gezielte Beeinflussung der Apoptose neue molekulare Ansätze zur Therapie der Sepsis zu finden.

Abstract

Sepsis is still a leading cause of death in many intensive care patients. The pathophysiology of the disease is dominated by complex immune cascades. Recent research demonstrates that immune cells respond to sepsis with an increased rate of programmed cell death. Up-regulated apoptosis of leukocytes was observed in animal models of sepsis as well as in patients suffering from severe sepsis. The mitochondrial protein Bcl-2 and the caspase cascade play an important role in the regulation of apoptosis. Overexpression of Bcl-2 or inhibition of caspases resulted in an increased survival in animal models of sepsis. Recent reports indicate the relevance of apoptosis in patients with severe sepsis. These results may spawn novel immunomodulatory strategies in the treatment of sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2a–c

Literatur

  1. Adrie C, Bachelet M, Vayssier-Taussat M et al. (2001) Mitochondrial membrane potential and apoptosis peripheral blood monocytes in severe human sepsis. Am J Respir Crit Care Med 164:389–395

    CAS  PubMed  Google Scholar 

  2. Anderson HA, Maylock CA, Williams JA, Paweletz CP, Shu H, Shacter E (2003) Serum-derived protein S binds to phosphatidylserine and stimulates the phagocytosis of apoptotic cells. Nat Immunol 4:87–91

    Article  CAS  PubMed  Google Scholar 

  3. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29:1303–1310

    CAS  PubMed  Google Scholar 

  4. Aranow JS, Fink MP (1996) Determinants of intestinal barrier failure in critical illness. Br J Anaesth 77:71–81

    CAS  PubMed  Google Scholar 

  5. Ayala A, Herdon CD, Lehman DL, Ayala CA, Chaudry IH (1996) Differential induction of apoptosis in lymphoid tissues during sepsis: variation in onset, frequency, and the nature of the mediators. Blood 87:4261–4275

    CAS  PubMed  Google Scholar 

  6. Ayala A, Xin XY, Ayala CA, Sonefeld DE, Karr SM, Evans TA, Chaudry IH (1998) Increased mucosal B-lymphocyte apoptosis during polymicrobial sepsis is a Fas ligand but not an endotoxin-mediated process. Blood 91:1362–1372

    CAS  PubMed  Google Scholar 

  7. Ayala A, Chung CS, Xu YX, Evans TA, Redmond KM, Chaudry IH (1999) Increased inducible apoptosis in CD4+ T lymphocytes during polymicrobial sepsis is mediated by Fas ligand and not endotoxin. Immunology 97:45–55

    Article  CAS  PubMed  Google Scholar 

  8. Baker CC, Chaudry IH, Gaines HO, Baue AE (1983) Evaluation of factors affecting mortality rate after sepsis in a murine cecal ligation and puncture model. Surgery 94:331–335

    CAS  PubMed  Google Scholar 

  9. Bone RC (1996) Sir Isaac Newton, sepsis, SIRS, and CARS. Crit Care Med 24:1125–1128

    CAS  PubMed  Google Scholar 

  10. Bone RC, Balk RA, Cerra FB et al. (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 101:1644–1655

    CAS  PubMed  Google Scholar 

  11. Brun-Buisson C (2000) The epidemiology of the systemic inflammatory response. Intensive Care Med 26 [Suppl 1]:S64–74

    Google Scholar 

  12. Brun-Buisson C, Doyon F, Carlet J et al. (1995) Incidence, risk factors, and outcome of severe sepsis and septic shock in adults. A multicenter prospective study in intensive care units. French ICU Group for Severe Sepsis. JAMA 274:968–974

    CAS  PubMed  Google Scholar 

  13. Buendia B, Santa-Maria A, Courvalin JC (1999) Caspase-dependent proteolysis of integral and peripheral proteins of nuclear membranes and nuclear pore complex proteins during apoptosis. J Cell Sci 112:1743–1753

    CAS  PubMed  Google Scholar 

  14. Bump NJ, Hackett M, Hugunin M et al. (1995) Inhibition of ICE family proteases by baculovirus antiapoptotic protein p35. Science 269:1885–1888

    CAS  Google Scholar 

  15. Casey LC, Balk RA, Bone RC (1993) Plasma cytokine and endotoxin levels correlate with survival in patients with the sepsis syndrome. Ann Intern Med 119:771–778

    CAS  PubMed  Google Scholar 

  16. Chung CS, Xu YX, Chaudry IH, Ayala A (1998) Sepsis induces increased apoptosis in lamina propria mononuclear cells which is associated with altered cytokine gene expression. J Surg Res 77:63–70

    Article  CAS  PubMed  Google Scholar 

  17. Chung CS, Song GY, Moldawer LL, Chaudry IH, Ayala A (2000) Neither Fas ligand nor endotoxin is responsible for inducible peritoneal phagocyte apoptosis during sepsis/peritonitis. J Surg Res 91:147–153

    Article  CAS  PubMed  Google Scholar 

  18. Coopersmith CM, Chang KC, Swanson PE et al. (2002) Overexpression of Bcl-2 in the intestinal epithelium improves survival in septic mice. Crit Care Med 30:195–201

    CAS  PubMed  Google Scholar 

  19. Coopersmith CM, Stromberg PE, Dunne WM et al. (2002) Inhibition of intestinal epithelial apoptosis and survival in a murine model of pneumonia-induced sepsis. JAMA 287:1716–1721

    Article  PubMed  Google Scholar 

  20. Daugas E, Nochy D, Ravagnan L, Loeffler M, Susin SA, Zamzami N, Kroemer G (2000) Apoptosis-inducing factor (AIF): a ubiquitous mitochondrial oxidoreductase involved in apoptosis. FEBS Lett 476:118–123

    Article  CAS  PubMed  Google Scholar 

  21. Deitch EA, Bridges W, Baker J et al. (1988) Hemorrhagic shock-induced bacterial translocation is reduced by xanthine oxidase inhibition or inactivation. Surgery 104:191–198

    CAS  PubMed  Google Scholar 

  22. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391:43–50

    PubMed  Google Scholar 

  23. Evan GI, Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411:342–348

    PubMed  Google Scholar 

  24. Fadok VA, Bratton DL, Frasch SC, Warner ML, Henson PM (1998) The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ 5:551–562

    Article  CAS  PubMed  Google Scholar 

  25. Frasch SC, Henson PM, Kailey JM, Richter DA, Janes MS, Fadok VA, Bratton DL (2000) Regulation of phospholipid scramblase activity during apoptosis and cell activation by protein kinase Cdelta. J Biol Chem 275:23065–23073

    Article  CAS  PubMed  Google Scholar 

  26. Green DR, Ferguson TA (2001) The role of Fas ligand in immune privilege. Nat Rev Mol Cell Biol 2:917–924

    CAS  Google Scholar 

  27. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    Article  CAS  PubMed  Google Scholar 

  28. Hersey P, Zhang XD (2001) How melanoma cells evade trail-induced apoptosis. Nat Rev Cancer 1:142–150

    Article  CAS  PubMed  Google Scholar 

  29. Hiramatsu M, Hotchkiss RS, Karl IE, Buchman TG (1997) Cecal ligation and puncture (CLP) induces apoptosis in thymus, spleen, lung, and gut by an endotoxin and TNF-independent pathway. Shock 7:247–253

    CAS  PubMed  Google Scholar 

  30. Hotchkiss RS, Karl IE (2003) The pathophysiology and treatment of sepsis. N Engl J Med 348:138–150

    Article  CAS  PubMed  Google Scholar 

  31. Hotchkiss RS, Swanson PE, Cobb JP, Jacobson A, Buchman TG, Karl IE (1997) Apoptosis in lymphoid and parenchymal cells during sepsis: findings in normal and T- and B-cell-deficient mice. Crit Care Med 25:1298–1307

    Google Scholar 

  32. Hotchkiss RS, Swanson PE, Freeman BD et al. (1999) Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med 27:1230–1251

    CAS  PubMed  Google Scholar 

  33. Hotchkiss RS, Swanson PE, Knudson CM et al. (1999) Overexpression of Bcl-2 in transgenic mice decreases apoptosis and improves survival in sepsis. J Immunol 162:4148–4156

    CAS  PubMed  Google Scholar 

  34. Hotchkiss RS, Tinsley KW, Swanson PE et al. (1999) Prevention of lymphocyte cell death in sepsis improves survival in mice. Proc Natl Acad Sci U S A 96:14541–14546

    Article  CAS  PubMed  Google Scholar 

  35. Hotchkiss RS, Tinsley KW, Hui JJ et al. (2000) p53-dependent and -independent pathways of apoptotic cell death in sepsis. J Immunol 164:3675–3680

    CAS  PubMed  Google Scholar 

  36. Hotchkiss RS, Chang KC, Swanson PE et al. (2000) Caspase inhibitors improve survival in sepsis: a critical role of the lymphocyte. Nat Immunol 1:496–501

    Article  CAS  PubMed  Google Scholar 

  37. Hotchkiss RS, Tinsley KW, Swanson PE et al. (2001) Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. J Immunol 166:6952–6963

    CAS  PubMed  Google Scholar 

  38. Hotchkiss RS, Tinsley KW, Swanson PE et al. (2002) Depletion of dendritic cells, but not macrophages, in patients with sepsis. J Immunol 168:2493–2500

    CAS  PubMed  Google Scholar 

  39. Hotchkiss RS, Tinsley KW, Swanson PE, Karl IE (2002) Endothelial cell apoptosis in sepsis. Crit Care Med 30:S225–228

    Article  PubMed  Google Scholar 

  40. Johnson DE (2000) Noncaspase proteases in apoptosis. Leukemia 14:1695–1703

    Article  CAS  PubMed  Google Scholar 

  41. Kerr JF (1971) Shrinkage necrosis: a distinct mode of cellular death. J Pathol 105:13–20

    CAS  PubMed  Google Scholar 

  42. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    PubMed  Google Scholar 

  43. Kothakota S, Azuma T, Reinhard C et al. (1997) Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278:294–298

    CAS  PubMed  Google Scholar 

  44. Kox WJ, Volk T, Kox SN, Volk HD (2000) Immunomodulatory therapies in sepsis. Intensive Care Med 26 [Suppl 1]:S124–128

    Google Scholar 

  45. Krammer PH (2000) CD95’s deadly mission in the immune system. Nature 407:789–795

    Article  CAS  PubMed  Google Scholar 

  46. Leist M, Jaattela M (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2:589–598

    CAS  PubMed  Google Scholar 

  47. Levy MM, Fink MP, Marshall JC et al. (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med 31:1250–1256

    PubMed  Google Scholar 

  48. Liu X, Zou H, Slaughter C, Wang X (1997) DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89:175–184

    CAS  PubMed  Google Scholar 

  49. Maloney JP, Halbower AC, Fouty BF et al. (2000) Systemic absorption of food dye in patients with sepsis. N Engl J Med 343:1047–1048

    Article  CAS  Google Scholar 

  50. Martin C, Boisson C, Haccoun M, Thomachot L, Mege JL (1997) Patterns of cytokine evolution (tumor necrosis factor-alpha and interleukin-6) after septic shock, hemorrhagic shock, and severe trauma. Crit Care Med 25:1813–1819

    CAS  PubMed  Google Scholar 

  51. Martinou JC, Green DR (2001) Breaking the mitochondrial barrier. Nat Rev Mol Cell Biol 2:63–67

    Article  CAS  PubMed  Google Scholar 

  52. Mate MJ, Ortiz-Lombardia M, Boitel B et al. (2002) The crystal structure of the mouse apoptosis-inducing factor AIF. Nat Struct Biol 9:442–446

    Article  CAS  PubMed  Google Scholar 

  53. Meier P, Finch A, Evan G (2000) Apoptosis in development. Nature 407:796–801

    Article  CAS  PubMed  Google Scholar 

  54. Miura M, Zhu H, Rotello R, Hartwieg EA, Yuan J (1993) Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75:653–660

    CAS  PubMed  Google Scholar 

  55. Nicholson DW (2000) From bench to clinic with apoptosis-based therapeutic agents. Nature 407:810–816

    CAS  PubMed  Google Scholar 

  56. Oberholzer A, Oberholzer C, Minter RM, Moldawer LL (2001) Considering immunomodulatory therapies in the septic patient: should apoptosis be a potential therapeutic target? Immunol Lett 75:221–224

    Article  CAS  PubMed  Google Scholar 

  57. Oberholzer C, Oberholzer A, Clare-Salzler M, Moldawer LL (2001) Apoptosis in sepsis: a new target for therapeutic exploration. FASEB J 15:879–892

    CAS  PubMed  Google Scholar 

  58. Papathanassoglou ED, Moynihan JA, McDermott MP, Ackerman MH (2001) Expression of Fas (CD95) and Fas ligand on peripheral blood mononuclear cells in critical illness and association with multiorgan dysfunction severity and survival. Crit Care Med 29:709–718

    Article  CAS  PubMed  Google Scholar 

  59. Reed JC (2002) Apoptosis-based therapies. Nat Rev Drug Discov 1:111–121

    Article  CAS  PubMed  Google Scholar 

  60. Reinhart K, Karzai W (2001) Anti-tumor necrosis factor therapy in sepsis: update on clinical trials and lessons learned. Crit Care Med 29:S121–125

    Article  CAS  PubMed  Google Scholar 

  61. Salvesen GS, Duckett CS (2002) IAP proteins: blocking the road to death’s door. Nat Rev Mol Cell Biol 3:401–410

    Article  CAS  PubMed  Google Scholar 

  62. Schroeder S, Lindemann C, Decker D et al. (2001) Increased susceptibility to apoptosis in circulating lymphocytes of critically ill patients. Langenbecks Arch Surg 386:42–46

    Article  CAS  PubMed  Google Scholar 

  63. Susin SA, Lorenzo HK, Zamzami N et al. (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    PubMed  Google Scholar 

  64. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    Article  CAS  PubMed  Google Scholar 

  65. Tinsley KW, Cheng SL, Buchman TG et al. (2000) Caspases-2, -3, -6, and -9, but not caspase-1, are activated in sepsis-induced thymocyte apoptosis. Shock 13:1–7

    CAS  Google Scholar 

  66. Walmrath D, Grimminger F, Seeger W (2001) Schwere Sepsis—neue Therapieverfahren. Internist 42:1619–1630

    Article  CAS  PubMed  Google Scholar 

  67. Wang SD, Huang KJ, Lin YS, Lei HY (1994) Sepsis-induced apoptosis of the thymocytes in mice. J Immunol 152:5014–5021

    CAS  PubMed  Google Scholar 

  68. Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284:555–556

    CAS  PubMed  Google Scholar 

  69. Xiang J, Chao DT, Korsmeyer SJ (1996) BAX-induced cell death may not require interleukin 1 beta-converting enzyme-like proteases. Proc Natl Acad Sci U S A 93:14559–14563

    CAS  PubMed  Google Scholar 

  70. Zamzami N, Kroemer G (2001) The mitochondrion in apoptosis: how Pandora’s box opens. Nat Rev Mol Cell Biol 2:67–71

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. U. Weber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, S.U., Schewe, JC., Putensen, C. et al. Apoptose als Pathomechanismus in der Sepsis. Anaesthesist 53, 59–65 (2004). https://doi.org/10.1007/s00101-003-0627-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-003-0627-3

Schlüsselwörter

Keywords

Navigation