Skip to main content

Advertisement

Log in

Specific toxicity after stereotactic body radiation therapy to the central chest

A comprehensive review

Spezifische Toxizität nach stereotaktischer Strahlentherapie des zentralen Brustkorbs

Eine umfangreiche Literaturübersicht

  • Review Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

“The results show that the effect of multiple dose fractions, even a very small one, is in no respect different, in terms of macroscopic (skin) damages, from that of a single dose” Reisner, “Skin erythema and roentgen therapy”, 1933

Abstract

The toxicity of stereotactic body radiation therapy in the central chest remains an unsettled issue. The collected data concerning the observed complications are poorly understood and are limited in their quantity and quality, thus hampering a precise delineation of treatment-specific toxicity. The majority of complications scored as toxicity grade 5, namely respiratory failure and fatal hemoptysis, are most likely related to multiple competing risks and occurred at different dose fractionation schemas, e. g., 10–12 fractions of 4–5 Gy, 5 fractions of 10 Gy, 3 fractions of 20–22 Gy, and 1 fraction of 15–30 Gy. Further investigations with longer follow-up and more details of patients’ pretreatment and tumor characteristics are required. Furthermore, satisfactory documentation of complications and details of dosimetric parameters, as well as limitation of the wide range of possible fractionation schemes is also warranted for a better understanding of the risk factors relevant for macroscopic damage to the serially organized anatomic structure within the central chest.

Zusammenfassung

Das Risiko für schwere Nebenwirkungen der stereotaktischen Strahlentherapie bei zentralen Lungentumoren ist bisher schlecht definiert. Nicht nur die begrenzte Zahl der dokumentierten Ereignisse, sondern auch die Vielzahl der verwendeten Fraktionierungsschemata erschwert das Herausarbeiten valider prognostischer Faktoren. Auf Basis dieser Datenlage lässt sich das Risiko für Grad-5-Toxizitäten, insbesondere Atemversagen und tödliche Blutungen, kaum einem bestimmten Dosis- oder Fraktionierungsschema, wie z. B. 10–12 Fraktionen mit 4–5 Gy, 5 Fraktionen mit 10 Gy, 3 Fraktionen mit 20–22 Gy und 1 Fraktion mit 15–30 Gy zuordnen, da multiple patientenspezifische, konkurrierende Risiken dabei einen wesentlichen Einfluss zu haben scheinen. Es wird zukünftig erforderlich sein, prätherapeutische Patienten- und Tumorcharakteristika genauer zu erfassen, dosimetrische Parameter besser zu dokumentieren und die Vielfalt der Fraktionierungsschemata zu begrenzen, um die relevanten Risikofaktoren für schwere Nebenwirkungen an den seriell organisierten anatomischen Strukturen des zentralen Brustkorbs besser definieren zu können.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bezjak A, Paulus R, Gaspar LE et al (2016) Primary study endpoint analysis for NRG Oncology/RTOG 0813 trial of stereotactic body radiation therapy (SBRT) for centrally located non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 94:4–5

    Article  Google Scholar 

  2. Shanne DH, Nestle U, Allgäuer M et al (2015) Stereotactic body radiotherapy for centrally located stage I NSCLC: a multicenter analysis. Strahlenther Onkol 191:125–132

    Article  Google Scholar 

  3. Kang KH, Okoze CC, Patel RB et al (2015) Complications from stereotactic body radiotherapy for lung cancer. Cancers (Basel) 7:981–1004

    Article  Google Scholar 

  4. Evans DJ, Gomez DR, Chang JY et al (2013) Cardiac 18F-fluorodeoxyglucose uptake on positron emission tomography after thoracic stereotactic body radiation therapy. Radiother Oncol 109:82–88

    Article  PubMed  Google Scholar 

  5. Timmerman R, Papiez L, McGary R et al (2003) Extracranial stereotactic radioablation: results of phase I study in medically inoperable stage I non-small cell lung cancer. Chest 124:1946–1955

    Article  PubMed  Google Scholar 

  6. McGarry R, Papiez L, Williams M et al (2005) Stereotactic body radiation therapy of early stage lung non-small cell carcinoma: phase I study. J Radiat Oncol Biol Phys 63:1010–1015

    Article  Google Scholar 

  7. Timmerman R, Lohr F (2005) Normal tissue dose constraints applied in lung stereotactic body radiation therapy. In: Kavanagh BD, Timmerman R (eds) Stereotactic body radiation therapy. Lippincott Williams & Wilkins, Philadelphia, pp 29–37

    Google Scholar 

  8. Timmerman R, McGarry R, Yiannoutsos C et al (2006) Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early stage lung cancer. J Clin Oncol 24:4833–4839

    Article  PubMed  Google Scholar 

  9. Milano MT, Chen Y, Katz AW et al (2009) Central thoracic lesions treated with hypofractionated stereotactic body radiotherapy. Radiother Oncol 91:301–306

    Article  PubMed  Google Scholar 

  10. Baba F, Shibamoto Y, Ogino H et al (2010) Clinical outcomes of stereotactic body radiotherapy for stage I non-small cell lung cancer using different doses dependent on tumor size. Radiat Oncol 5:81

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shibamato Y, Hashizume C, Baba F et al (2012) Stereotactic body radiotherapy using a radiobiolgy-based regimen for stage I non-small cell lung cancer. Cancer 118:2078–2084

    Article  Google Scholar 

  12. Chang JY, Li QQ, Xu QY et al (2014) Stereotactic ablative radiation therapy for centrally located early stage or isolated parenchymal recurrences of non-small cell lung cancer: how to fly in a “No Fly Zone”. Int J Radiat Oncol Biol Phys 88:1120–1128

    Article  PubMed  Google Scholar 

  13. Modh A, Rimmer A, Williams E et al (2014) Local control and toxicity in a large cohort of central lung tumors treated with stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 90:1168–1176

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bonomo P, Livi L, Rampini A et al (2013) Stereotactic body radiotherapy for cardiac and paracardiac metastases: University of Florence experience. Radiol Med 118:1055–1065

    Article  PubMed  Google Scholar 

  15. Fakiris A, McGarry R, Yinnoutoss C et al (2009) Stereotactic body radiation therapy for early-stage non-small-cell lung carcinoma: four years results of a prospective phase II study. Int J Radiat Oncol Biol Phys 75:677–682

    Article  Google Scholar 

  16. Rowe BP, Boffa DJ, Wilson LD et al (2010) Stereotactic body radiotherapy for central lung tumors. J Thorac Oncol 7:1349–1399

    Google Scholar 

  17. Unger K, Ju A, Oermann E et al (2010) CyberKnife for hilar lung tumors: report of clinical response and toxicity. J Hematol Oncol 3:39

    Article  PubMed  PubMed Central  Google Scholar 

  18. Stauder MC, McDonald OK, Olivier KR et al (2011) Early pulmonary toicity following lung stereotactic body radiation therapy delivered in consecutive daily fractions. Radiother Oncol 99:166

    Article  PubMed  Google Scholar 

  19. Tekatli H, Senan S, Dahele M et al (2015) Stereotactic ablative radiotherapy (SABR) for central lung tumors: Plan quality and long-term clinical outcomes. Radiother Oncol 117:64–70

    Article  PubMed  Google Scholar 

  20. Joyner M, Salter JB, Papanikolaus N et al (2006) Stereotactic body radiation therpy for centrally located lung lesions. Acta Oncol 45:802–807

    Article  PubMed  Google Scholar 

  21. Oskan F, Korhuber C, Krause G et al (2013) Simultaneous stereotactic body radiation therapy of a primary non-small cell lung cancer and synchronous carcinoma in situ in a medically inoperable patient: case report. Radiat Oncol 8:213

    Article  PubMed  PubMed Central  Google Scholar 

  22. Onishi H, Araki T, Shirato H et al (2004) Stereotactic hypofractionated hig-dose irradiation for stage I non-small cell lung carcinoma: Clinical outcomes in 245 subjects in a Japanese multi-institutional study. Cancer 101:1623–1631

    Article  PubMed  Google Scholar 

  23. Peulen H, Karlsson K, Lindberg K et al (2011) Toxicity after reirradiation of pulmonary tumours with stereotactic body radiotherapy. Radiother Oncol 101:260–266

    Article  PubMed  Google Scholar 

  24. Song DY, Benedict SH, Cardinale RM et al (2005) Stereotactic body radiation therapy of lung tumors: preliminary experience using normal tissue complication probability-based dose limits. Am J Clin Oncol 28:591–596

    Article  PubMed  Google Scholar 

  25. Baumann P, Nyman J, Lax I et al (2006) Factors important for efficacy of stereotactic body radiotherapy of medically inoperable stage I lung cancer. A retrospective analysis of patients treated in the Nordic countries. Acta Oncol 45:787–795

    Article  PubMed  Google Scholar 

  26. Song SY, Choi W, Shin S et al (2009) Fractionated stereotactic body radiation therapy for medically inoperable stage I lung cancer adjacent to central large bronchus. Lung Cancer 66:89–93

    Article  PubMed  Google Scholar 

  27. Oshiro Y, Aruga T, Tsuboi K et al (2010) Stereotactic body radiotherapy for lung tumors at the pulmonary hilum. Strahlenther Onkol 186:274–279

    Article  PubMed  Google Scholar 

  28. Andratschke N, Zimmermann F, Boehm E et al (2011) Stereotactic radiotherapy for of histologically proven inoperable stage I non-small cell cancer: patterns of failure. Radiother Oncol 101:245–249

    Article  PubMed  Google Scholar 

  29. Bral S, Gevarte T, Linthout N et al (2011) Prospective, risk-adapted strategy of stereotactic body radiation therapy for early stage non-small-cell lung cancer: results of phase II study. Int J Radiat Oncol Biol Phys 80:1343–1349

    Article  PubMed  Google Scholar 

  30. Haasbeek CJ, Laagerwaard FJ, Soltman BJ et al (2011) Outcomes of stereotactic ablative radiotherapy for centrally located early-stage lung cancer. J Thorac Oncol 6:2036–2043

    Article  PubMed  Google Scholar 

  31. Feddock J, Arnold S, Shelton B et al (2013) Stereotactic body radiation therapy can be used safely to boost residual disease in locally advanced non-small cell lung cancer: a prospective study. Int J Radiat Oncol Biol Phys 85:1325–1331

    Article  PubMed  Google Scholar 

  32. Prendergast BM, Dobelbower MC, Bonner JA, Bonner JA et al (2013) Stereotactic body radiation therapy (SBRT) for lung malignancies: preliminary toxicity resuls using a flattening filter linear accelartor operating at 2400 monitor units per minute. Radiat Oncol 8:273

    Article  PubMed  PubMed Central  Google Scholar 

  33. Karlsson K, Nyman J, Baumann P et al (2013) Retrospective cohort study of bronchial doses and radiation-induced atelectasis after stereotactic body radiation therapy of lung tumors located close to the bronchial tree. Int J Radiat Oncol Biol Phys 87:590–595

    Article  PubMed  Google Scholar 

  34. Nishimura S, Takeda A, Sanuki N et al (2014) Toxicities of organs at risk in the mediastinal and hilar regions following stereotactic body radiotherapy for centrally located lung tumors. J Thorac Oncol 9:1370–1376

    Article  CAS  PubMed  Google Scholar 

  35. Karlsson K (2006) Centrally located lung tumors treated with stereotactic body radiation therapy: student thesis. Stockholm University, Stockholm (http://www.diva-portal.org/smash/get/diva2:197881/FULLTEXT01.pdf)

    Google Scholar 

  36. Han CB, Wang WL, Quint L et al (2014) Pulmonary artery invasion, high-dose radiation, and overall survival in patients with non-small cell lung cancer. Int J Radiat Oncol Biol Phys 89:313–321

    Article  PubMed  PubMed Central  Google Scholar 

  37. Feddock J, Cleary R, Arnold S et al (2013) Risk for fatal pulmonary hemorrhage does not appear to be increased following dose escalation using stereotactic body radiotherapy (SBRT) in locally advanced non-small cell lung cancer (NSCLC). J Radiosurg SBRT 2:235–242

    Google Scholar 

  38. Chang JY, Xu Q, Balter P et al (2013) Clinical outcome and toxicity in central located or isolated recurrent non-small cell lung cancer treated with stereotactic ablative radiation therapy. Int J Radiat Oncol Biol Phys 87:514–S515

    Article  Google Scholar 

  39. Ito M, Niho S, Nihei K et al (2012) Risk factors associated with fatal pulmonary hemorrhage in locally advanced non-small cell lung cancer treated with chemoradiotherapy. BMC Cancer 12:27

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kim YH, Kim EY, Ban HY et al (2010) Risk of fatal hemoptysis after concurrent chemoradiation in patients with non-small cell cancer. Chonnam Med J 46:19–24

    Article  CAS  Google Scholar 

  41. Reck M, Barlesi F, Crino L et al (2012) Predicting and managing the risk of pulmonary haemorrhage in patients with NSCLC in patients treated with bevacizumab: a consensus report from a panel of experts. Ann Oncol 23:1111–1120

    Article  CAS  PubMed  Google Scholar 

  42. Haseltine JM, Rimmner A, Gelblum DY et al (2015) Fatal complications after stereotactic body radiation therapy for central lung tumors abutting the proximal bronchial tree. Pract Radiat Oncol 6(2):e27–e33

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wulf J, Hadinger U, Oppitz U et al (2001) Stereotactic radiotherapy of targets in the lung and the liver. Strahlenther Onkol 177:645–655

    Article  CAS  PubMed  Google Scholar 

  44. Fink AS, Kim JA, McBride RD (2007) Toxicity and efficacy of treating mediastinal and hilar lesions. In: Urshel HJ (ed) Robotic radiosurgery: treating tumors that move with respiration. Springer, Heidelberg, pp 177–192

    Chapter  Google Scholar 

  45. Le QT, Loo BW, Ho A et al (2006) Results of a phase I dose-escalation study using single-fraction stereotactic radiotherapy for lung tumors. J Thorac Oncol 1:802–809

    Article  PubMed  Google Scholar 

  46. Trovo M, Minatel E, Durofil E et al (2014) Stereotactic body radiation therapy for re-irradiation of persistent or recurrent non-small cell lung cancer. Int J Radiat Oncol Biol Phys 88:114–119

    Article  Google Scholar 

  47. Kilburn JM, Kuremskz JG, Blackstock AW et al (2014) Thoracic re-irradiation using stereotactic body radiotherapy (SBRT) techniques as first or second course of treatment. Radiother Oncol 110:505–510

    Article  PubMed  PubMed Central  Google Scholar 

  48. Park HS, Harder EM, Mancini BR (2015) Central versus peripheral tumor location: influence on survival, local control and toxicity following stereotactic body radiotherapy for primary non-small cell lung cancer. J Thorac Oncol 10:832–837

    Article  PubMed  Google Scholar 

  49. Corradetti MN, Haas AR, Rengan R (2012) Central-airway necrosis after stereotactic body radiation therapy. N Eng J Med 366:2327–2329

    Article  Google Scholar 

  50. Stephans KL, Djemil T, Diaconu C et al (2014) Esophageal dose tolerance to hypofractionated stereotactic body radiation therapy: risk factors for late toxicity. Int J Radiat Oncol Biol Phys 90:197–102

    Article  PubMed  Google Scholar 

  51. Dodds WY, Stewart ET, Hodges D et al (1973) Movement of the feline esophagus associated with respiration and peristalsis: an evaluation using tantalum marker. J Clin Invest 52:1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Onimaru R, Shirato H, Schimizu H et al (2003) Tolerance of organs at risk in small volume, hypofractionated, image-guided radiotherapy for primary and metastatic lung cancers. Int J Radiat Oncol Biol Phys 56:126–135

    Article  PubMed  Google Scholar 

  53. Guckenberger M, Wulf J, Mueller G et al (2009) Dose-response relationship for image-guided stereotactic body radiotherapy of pulmonary tumors: relevance of 4D dose calculation. Int J Radiat Oncol Biol Phys 74:47–54

    Article  PubMed  Google Scholar 

  54. Kelly P, Balter PA, Rebueno N et al (2010) Stereotactic body radiation therapy for patients with lung cancer previously treated with thoracic radiation. Int J Radiat Oncol Biol Phys 78:1387–1393

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feras Oskan.

Ethics declarations

Conflict of interest

F. Oskan, G. Becker, and M. Bleif declare that they have no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.

Caption Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oskan, F., Becker, G. & Bleif, M. Specific toxicity after stereotactic body radiation therapy to the central chest. Strahlenther Onkol 193, 173–184 (2017). https://doi.org/10.1007/s00066-016-1063-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-016-1063-z

Keywords

Schlüsselwörter

Navigation