Skip to main content

Advertisement

Log in

Radiosensitization by histone deacetylase inhibition in an osteosarcoma mouse model

Radiosensitivierung durch Histon-Deacetylasehemmung im Osteosarkom- Mausmodell

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background

Osteosarcomas (OS) are highly malignant and radioresistant tumors. Histone deacetylase inhibitors (HDACi) constitute a novel class of anticancer agents. We sought to investigate the effect of combined treatment with suberoylanilide hydroxamic acid (SAHA) and radiotherapy in OS in vivo.

Methods

Clonogenic survival of human OS cell lines as well as tumor growth delay of OS xenografts were tested after treatment with either vehicle, radiotherapy (XRT), SAHA, or XRT and SAHA. Tumor proliferation, necrosis, microvascular density, apoptosis, and p53/p21 were monitored by immunohistochemistry. The CD95 pathway was performed by flow cytometry, caspase (3/7/8) activity measurements, and functional inhibition of CD95 death signaling.

Results

Combined treatment with SAHA and XRT markedly reduced the surviving fraction of OS cells as compared to XRT alone. Likewise, dual therapy significantly inhibited OS tumor growth in vivo as compared to XRT alone, reflected by reduced tumor proliferation, impaired angiogenesis, and increased apoptosis. Addition of HDACi to XRT led to elevated p53, p21, CD95, and CD95L expression. Inhibition of CD95 signaling reduced HDACi- and XRT-induced apoptosis.

Conclusion

Our data show that HDACi increases the radiosensitivity of osteosarcoma cells at least in part via ligand-induced apoptosis. HDACi thus emerge as potentially useful treatment components of OS.

Zusammenfassung

Zielsetzung

Osteosarkome (OS) sind hochmaligne und relative radioresistente Tumore. Histon-Deacetylase-Inhibitoren (HDACi) stellen eine neue Substanzklasse in der Tumortherapie dar, insbesondere in Kombination mit anderen antineoplastischen Therapiestrategien. Wir haben deshalb die Effekte der Kombinationstherapie von Suberoylanilide Hydroxamic Acid (SAHA) und konventioneller Radiotherapie im OS-Mausmodell untersucht.

Methoden

Es wurde die Tumorwachstumsverzögerung in OS-Xenografts nach Behandlung mit Radiotherapie (XRT), SAHA alleine oder XRT und SAHA untersucht. Die Tumorproliferation, Tumornekrose, Tumorvaskularisation, Apoptose und p53/p21-Expression wurden immunohistochemisch analysiert. Die Bestimmung der CD95-vermittelten Apoptose erfolgte durchflusszytometrisch sowie durch Messung der Caspase-(3-/7-/8-)Aktivität und funktionaler Inhibition des CD95-Liganden.

Ergebnisse

Die Kombinationsbehandlung führt zu einer signifikanten Reduktion des Tumorwachstums in vivo im Vergleich zur alleinigen Radiotherapie, reflektiert durch eine verminderte Tumorproliferation sowie reduzierte Angiogenese und gesteigerte Apoptoseinduktion. Die Kombination von HDACi und XRT resultiert in einer gesteigerten p53-, p21-, CD95- und CD95L-Expression. Eine Inhibition des CD95-Liganden führt zu einer reduzierten HDACi- und XRT-induzierten Apoptoserate nach Kombinationstherapie.

Schlußfolgerung

Die Ergebnisse zeigen, dass eine HDACi die Radiosensitivität von Osteosarkomzellen signifikant erhöht. Dies erfolgt – zumindest teilweise – durch die CD95-abhängige Apoptoseinduktion. Die Autoren sind daher der Meinung, dass HDACi eine potenziell wirksame Therapiestrategie beim OS darstellt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Belka C, Marini P, Budach W et al (1998) Radiation-induced apoptosis in human lymphocytes and lymphoma cells critically relies on the up-regulation of CD95/Fas/APO-1 ligand. Radiat Res 149:588–595

    Article  PubMed  CAS  Google Scholar 

  2. Bellarosa D, Bressan A, Bigioni M et al (2012) SAHA/Vorinostat induces the expression of the CD137 receptor/ligand system and enhances apoptosis mediated by soluble CD137 receptor in a human breast cancer cell line. Int J Oncol41:1486–1494

    Google Scholar 

  3. Bielack S, Jürgens H, Jundt G et al (2009) Osteosarcoma: the COSS experience. Cancer Treat Res 152:289–308

    Article  PubMed  Google Scholar 

  4. Bielack SS, Carrle D, Hardes J et al (2008) Bone tumors in adolescents and young adults. Curr Treat Options Oncol 9:67–80

    Article  PubMed  Google Scholar 

  5. Bielack SS, Kempf-Bielack B, Delling G et al (2002) Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol 20:776–790

    Article  PubMed  Google Scholar 

  6. Blattmann C, Oertel S, Ehemann V et al (2010) Enhancement of radiation response in osteosarcoma and rhabdomyosarcoma cell lines by histone deacetylase inhibition. Int J Radiat Oncol Biol Phys 78:237–245

    Article  PubMed  CAS  Google Scholar 

  7. Blattmann C, Oertel S, Thiemann M et al (2012) Suberoylanilide hydroxamic acid affects γH2AX expression in osteosarcoma, atypical teratoid rhabdoid tumor and normal tissue cell lines after irradiation. Strahlenther Onkol 188:168–176

    Article  PubMed  CAS  Google Scholar 

  8. Bots M, Johnstone RW (2009) Rational combinations using HDAC inhibitors. Clin Cancer Res 15:3970–3977

    Article  PubMed  CAS  Google Scholar 

  9. Bridges KA, Hirai H, Buser CA et al (2011) MK-1775, a novel wee1 kinase inhibitor radiosensitizes p53-defective human tumor cells. Clin Cancer Res 17:5638–5648

    Article  PubMed  CAS  Google Scholar 

  10. Dickinson M, Johnstone RW, Prince HM (2012) Histone deacetylase inhibitors: potential targets responsible for their anti-cancer effect. Invest New Drugs 28(Suppl 1):S3–S20

    Article  Google Scholar 

  11. Robert C, Rassool FV (2012) HDAC inhibitors: roles of DNA damage and repair. Adv Cancer Res 116:87–129

    PubMed  CAS  Google Scholar 

  12. Eckner R (2012) p53-dependent growth arrest and induction of p21: a critical role for PCAF-mediated histone acetylation. Cell Cycle 11:2591–2592

    Article  PubMed  CAS  Google Scholar 

  13. Ellis L, Hammers H, Pili R (2009) Targeting tumor angiogenesis with histone deacetylase inhibitors. Cancer Lett 280:145–153

    Article  PubMed  CAS  Google Scholar 

  14. Entin-Meer M, Yang X, Vandenburg SR et al (2007) In vivo efficacy of a novel histone deacetylase inhibitor in combination with radiation for the treatment of gliomas. Neuro Oncol 9:82–88

    Article  PubMed  CAS  Google Scholar 

  15. Folkvord S, Ree AH, Furre T et al (2009) Radiosensitization by SAHA in experimental colorectal carcinoma models—in vivo effects and relevance of histone acetylation status. Int J Radiat Oncol Biol Phys 74:546–552

    Article  PubMed  CAS  Google Scholar 

  16. Greve B, Sheikh-Mounessi F, Kemper B et al (2012) Survivin, a target to modulate the radiosensitivity of Ewing’s sarcoma. Strahlenther Onkol 188(11):1038–1047

    Article  PubMed  CAS  Google Scholar 

  17. Frew AJ, Johnstone RW, Bolden JE (2009) Enhancing the apoptotic and therapeutic effects of HDAC inhibitors. Cancer Lett 125:280–233

    Google Scholar 

  18. Fuchs EJ, McKenna KA, Bedi A (1997) p53-dependent DNA-damage-induced apoptosis requires Fas/APO-1-independent activation of CPP32β. Cancer Res 57:2550–2554

    PubMed  CAS  Google Scholar 

  19. Hundsdoerfer P, Albrecht M, Rühl U et al (2009) Long-term outcome after polychemotherapy and intensive local radiation therapy of high-grade osteosarcoma. Eur J Cancer 45:2447–2451

    Article  PubMed  CAS  Google Scholar 

  20. Johnstone RW, Licht JD (2003) Histone seacetylase inhibitors in cancer therapy: is transcription the primary target? Cancer Cell 4:13–18

    Article  PubMed  CAS  Google Scholar 

  21. Kawano T, Akiyama M, Agawa-Ohta M et al (2010) Histone deacetylase inhibitors valproic acid and depsipeptide sensitize retinoblastoma cells to radiotherapy by increasing H2AX phosphorylation and p53 acetylation-phosphorylation. Int J Oncol 37:787–795

    PubMed  CAS  Google Scholar 

  22. Koshkina NV, Rao-Bindal K, Kleinermann ES (2011) Effect of the HDAC inhibitor SNDX-275 on Fas signaling in osteosarcoma cells and the feasibility of its topical application for the treatment of osteosarcoma lung metafase. Cancer 117:3457–3467

    Article  PubMed  CAS  Google Scholar 

  23. Langenbacher M, Abdel-Jalil RJ, Voelter W et al (2013) In vitro hypoxic cytotoxicity and hypoxic radiosensitization: efficacy of the novel 2-nitroimidazole N,N,N-tris[2-(2-nitro-1H-imidazol-1-yl)ethyl]amine. Strahlenther Onkol 189:246–255

    Article  PubMed  CAS  Google Scholar 

  24. Ma X, Ezzeldin HH, Diaso RB (2009) Histone deacetylase inhibitors: current status and overview of recent clinical trials. Drugs 69:1911–1934

    Article  PubMed  CAS  Google Scholar 

  25. Mottet D, Castronovo V (2010) Histone deacetylases: anti-angiogenic targets in cancer therapy. Curr Cancer Drug Targets 10:898–913

    Article  PubMed  CAS  Google Scholar 

  26. Müller M, Wilder S, Bannasch D et al (1998) p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med 188:2033–2045

    Article  PubMed  Google Scholar 

  27. Munshi A, Kurland JF, Nishikawa T et al (2005) Histone deacetylase inhibitors radiosensitize human melanoma by suppressing DNA repair activity. Clin Cancer Res 11:4912–4922

    Article  PubMed  CAS  Google Scholar 

  28. New M, Olzscha H, La Thangue NB (2012) HDAC inhibitor-based therapies: can we interpret the code? Mol Oncol 6:637–656

    Article  PubMed  CAS  Google Scholar 

  29. Oertel S, Thiemann M, Richter K et al (2011) Combination of suberoylanilide hydroxamic acid with heavy ion therapy shows promising effects in infantile sarcoma cell lines. Radiat Oncol 20:119

    Article  Google Scholar 

  30. Robert C, Rassool FV (2012) HDAC inhibitors: roles of DNA damage and repair. Adv Cancer Res 116:87–129

    PubMed  CAS  Google Scholar 

  31. Romano JW, Ehrhart JC, Duthu A et al (1989) Identification and characterization of a p53 gene mutation in a human osteosarcoma cell line. Oncogene 4(12):1483–1488

    PubMed  CAS  Google Scholar 

  32. Schuchmann M, Schulze-Bergkamen H, Fleischer B et al (2006) Histone deacetylase inhibition by valproic acid down-regulates c-FLIP/CASH and sensitizes hepatoma cells towards CD95- and TRAIL receptor-mediated apoptosis and chemotherapy. Oncol Rep 15:227–230

    PubMed  CAS  Google Scholar 

  33. Shabason JE, Tofilon PJ, Camphausen K (2011) Grand rounds at the national institutes of health: HDAC inhibitors as radiation modifiers, from bench to clinic. J Cell Mol Med 15:2735–2744

    Article  PubMed  Google Scholar 

  34. Tamura T, Aoyama H, Saya H et al (1995) Induction of Fas-mediated apoptosis in p53-transfected human colon carcinoma cells. Oncogene 11:1939–1946

    PubMed  CAS  Google Scholar 

  35. Thayanithy V, Park C, Sarver AL et al (2012) Combinatorial treatment of DNA and chromatin-modifying drugs cause cell death in human and canine osteosarcoma cell lines. PLoS One 7:e43720

    Article  PubMed  CAS  Google Scholar 

  36. Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2:594–604

    Article  PubMed  CAS  Google Scholar 

  37. Watanabe K, Okamoto K, Yonehara S (2005) Sensitization of osteosarcoma cells to death receptor-mediated apoptosis by HDAC inhibitors through downregulation of cellular FLIP. Cell Death Differ 12:10–18

    Article  PubMed  CAS  Google Scholar 

  38. Xargay-Torrent S, López-Guerra M, Saborit-Villarroya I et al (2011) Vorinostat-induced apoptosis in mantle cell lymphoma is mediated by acetylation of proapoptotic BH3-only gene promoters. Clin Cancer Res 15:17:3956–3968

    Google Scholar 

  39. Zhao Y, Lu S, Wu L et al (2006) Acetylation of p53 at lysine 373/382 by the histone deacetylase inhibitor depsipeptide induces expression of p21[Waf1/Cip1]. Mol Cell Biol 26:2782–2790

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interests.

Acknowledgments

This study was supported by the German Krebshilfe (Deutsche Krebshilfe, 109665 and Max-Eder 108876), the German Federal Ministry of Research and Technology (Bundesministerium für Bildung und Forschung; BMBF 03NUK004A/C) and the Dietmar Hopp Stiftung. Furthermore, we would like to thank Ludmilla Frick, Sylvia Trinh, Claudia Rittmueller, Gabriele Becker, Alexandra Tietz, Angela Funk, and Andreas Griesbach for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Blattmann M.D..

Additional information

Oertel and Abdollahi share senior authorship.

Electronic supplementary material

66_2013_372_MO1_ESM.pdf

Supplemental Figures: „Determination of XRT dosage“ and „Course of weight in xenografts treated with vehicle, SAHA, XRT or XRT and SAHA“ (PDF 90kB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blattmann, C., Thiemann, M., Stenzinger, A. et al. Radiosensitization by histone deacetylase inhibition in an osteosarcoma mouse model. Strahlenther Onkol 189, 957–966 (2013). https://doi.org/10.1007/s00066-013-0372-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-013-0372-8

Keywords

Schlüsselwörter

Navigation