Skip to main content
Log in

Stereotactic ablative radiotherapy for small lung tumors with a moderate dose

Favorable results and low toxicity

Stereotaktische ablative Strahlentherapie mit mittlerer Dosis bei kleinen Lungentumoren

Günstige Ergebnisse und geringe Toxizität

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background

Stereotactic ablative body radiotherapy (SBRT, SABR) is being increasingly applied because of its high local efficacy, e.g., for small lung tumors. However, the optimum dosage is still under discussion. Here, we report data on 45 lung lesions [non-small cell lung cancer (NSCLC) or metastases] in 39 patients treated between 2009 and 2010 by SABR.

Patients and methods

SABR was performed with total doses of 35 Gy (5 fractions) or 37.5 Gy (3 fractions) prescribed to the 60% isodose line encompassing the planning target volume. Three-monthly follow-up CT scans were supplemented by FDG-PET/CT if clinically indicated.

Results

The median follow-up was 17 months. Local progression-free survival rates were 90.5% (all patients), 95.0% (NSCLC), and 81.8% (metastases) at 1 year. At 2 years, the respective local progression-free survival rates were 80.5%, 95.0%, and 59.7%. Overall survival rates were 71.1% (all patients), 65.4% (NSCLC), and 83.3% (metastases) at 1 year. Overall survival rates at 2 years were 52.7%, 45.9%, and 66.7%, respectively. Acute side effects were mild.

Conclusion

With the moderate dose schedule used, well-tolerated SABR led to favorable local tumor control as in other published series. Standardization in reporting the dose prescription for SABR is needed to allow comparison of different series in order to determine optimum dosage.

Zusammenfassung

Hintergrund

Die stereotaktische Strahlentherapie („stereotactic ablative body radiotherapy“, SBRT, SABR) wird aufgrund ihrer hohen lokalen Effizienz beispielsweise im Bereich kleiner Lungentumoren zunehmend eingesetzt. Die optimale Dosisverschreibung ist jedoch nach wie vor nicht geklärt. In dieser Arbeit werden die Daten von 45 Lungentumoren [nichtkleinzelliges Bronchialkarzinom (NSCLC) oder Metastasen] bei 39 Patienten vorgestellt, die zwischen 2009 und 2010 mittels SABR behandelt wurden.

Patienten und Methoden

Die Patienten wurden mittels SABR mit einer Gesamtdosis von 35 Gy (5 Fraktionen) oder 37,5 Gy (3 Fraktionen) behandelt, die Dosisverschreibung erfolgte auf die 60% Isodose am Rand des Strahlentherapie-Planungsvolumens (PTV, „planning target volume“). Alle 3 Monate wurde eine Nachsorge-Computertomographie (CT) durchgeführt, ergänzt durch Fluordeoxyglukose-Positronenemissionstomographie-CT, wenn klinisch indiziert.

Ergebnisse

Das mediane Follow-up betrug 17 Monate. Das lokal progressionsfreie Überleben nach einem Jahr betrug 90,5% (für alle Patienten); 95,0% (bei NSCLC) bzw. 81,8% (bei Metastasen). Nach 2 Jahren betrug das lokal progressionsfreie Überleben jeweils 80,5; 95,0 bzw. 59,7%. Das Gesamtüberleben nach einem Jahr betrug 71,1% (alle Patienten); 65,4% (NSCLC) bzw. 83,3% (Metastasen). Das Gesamtüberleben nach 2 Jahren betrug jeweils 52,7; 45,9 bzw. 66,7%. Akute Nebenwirkungen waren nur gering ausgeprägt.

Schlussfolgerung

Mit der hier verwendeten moderaten Dosisverschreibung wurde eine gute Tumorkontrolle erreicht. Eine standardisierte Darstellung der Dosisverschreibung wird vor allem für die Vergleichbarkeit von Patientenkollektiven untereinander als notwendig erachtet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Loo BW et al (2011) Stereotactic ablative radiotherapy: what’s in a name? Practical Radiat Oncol 1:38–39

    Article  Google Scholar 

  2. Crabtree TD et al (2010) Stereotactic body radiation therapy versus surgical resection for stage I non-small cell lung cancer. J Thorac Cardiovasc Surg 140:377–386

    Article  PubMed  Google Scholar 

  3. Grills IS et al (2010) Outcomes after stereotactic lung radiotherapy or wedge resection for stage I non-small-cell lung cancer. J Clin Oncol 28:928–935

    Article  PubMed  Google Scholar 

  4. Haasbeek CJ et al (2010) Stage I nonsmall cell lung cancer in patients aged > or = 75 years: outcomes after stereotactic radiotherapy. Cancer 116:406–414

    Article  PubMed  Google Scholar 

  5. Lagerwaard FJ et al (2008) Outcomes of risk-adapted fractionated stereotactic radiotherapy for stage I non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 70:685–692

    Article  PubMed  Google Scholar 

  6. Nguyen NP et al (2008) Can stereotactic fractionated radiation therapy become the standard of care for early stage non-small cell lung carcinoma. Cancer Treat Rev 34:719–727

    Article  PubMed  Google Scholar 

  7. Onishi H et al (2010) Stereotactic Body Radiotherapy (SBRT) for operable stage i non-small-cell lung cancer: can SBRT be comparable to surgery? Int J Radiat Oncol Biol Phys 81:1352–1358

    Article  PubMed  Google Scholar 

  8. Timmerman RD et al (2009) Local surgical, ablative, and radiation treatment of metastases. CA Cancer J Clin 59:145–170

    Article  PubMed  Google Scholar 

  9. Palma D et al (2010) Impact of introducing stereotactic lung radiotherapy for elderly patients with stage I non-small-cell lung cancer: a population-based time-trend analysis. J Clin Oncol 28:5153–5159

    Article  PubMed  Google Scholar 

  10. Timmerman R et al (2007) Optimizing dose and fractionation for stereotactic body radiation therapy. Normal tissue and tumor control effects with large dose per fraction. Front Radiat Ther Oncol 40:352–365

    Article  PubMed  Google Scholar 

  11. Onishi H et al (2007) Hypofractionated stereotactic radiotherapy (HypoFXSRT) for stage I non-small cell lung cancer: updated results of 257 patients in a Japanese multi-institutional study. J Thorac Oncol 2 [7 Suppl 3]:S94–S100

  12. Hiraoka M, Nagata Y (2004) Stereotactic body radiation therapy for early-stage non-small-cell lung cancer: the Japanese experience. Int J Clin Oncol 9:352–355

    Article  PubMed  Google Scholar 

  13. Zhang J et al (2011) Which is the optimal biologically effective dose of stereotactic body radiotherapy for Stage I non-small-cell lung cancer? A meta-analysis. Int J Radiat Oncol Biol Phys 81:305–316

    Article  Google Scholar 

  14. McGarry RC et al (2005) Stereotactic body radiation therapy of early-stage non-small-cell lung carcinoma: phase I study. Int J Radiat Oncol Biol Phys 63:1010–1015

    Article  PubMed  Google Scholar 

  15. Guckenberger M et al (2009) Dose-response relationship for image-guided stereotactic body radiotherapy of pulmonary tumors: relevance of 4D dose calculation. Int J Radiat Oncol Biol Phys 74:47–54

    Article  PubMed  Google Scholar 

  16. Wurstbauer K et al (2010) Non-small cell lung cancer in stages I-IIIB: Long-term results of definitive radiotherapy with doses >/= 80 Gy in standard fractionation. Strahlenther Onkol 186:551–557

    Article  PubMed  Google Scholar 

  17. Chang BK, Timmerman RD (2007) Stereotactic body radiation therapy: a comprehensive review. Am J Clin Oncol 30:637–644

    Article  PubMed  Google Scholar 

  18. Dahele M et al (2009) Stereotactic radiation therapy for inoperable, early-stage non-small-cell lung cancer. CMAJ 180:1326–1328

    Article  PubMed  Google Scholar 

  19. Heinzerling JH, Kavanagh B, Timmerman RD (2011) Stereotactic ablative radiation therapy for primary lung tumors. Cancer J 17:28–32

    Article  PubMed  Google Scholar 

  20. Siva S, MacManus M, Ball D (2010) Stereotactic radiotherapy for pulmonary oligometastases: a systematic review. J Thorac Oncol 5:1091–1099

    PubMed  Google Scholar 

  21. Zimmermann FB et al (2005) Stereotactic hypofractionated radiation therapy for stage I non-small cell lung cancer. Lung Cancer 48:107–114

    Article  PubMed  Google Scholar 

  22. Lammering G et al (2010) The use of FDG-PET to target tumors by radiotherapy. Strahlenther Onkol 186:471–481

    Article  PubMed  Google Scholar 

  23. Hodapp N et al (2009) The Freiburg patient positioning and fixation concept for precision radiotherapy. Strahlenther Onkol 185:126

    Google Scholar 

  24. Boda-Heggemann J et al (2011) kV cone-beam CT-based IGRT: a clinical review. Strahlenther Onkol 187:284–291

    Article  PubMed  Google Scholar 

  25. Eisenhauer EA et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247

    Article  PubMed  CAS  Google Scholar 

  26. Young H et al (1999) Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur J Cancer 35:1773–1782

    Article  PubMed  CAS  Google Scholar 

  27. NIH and NCI (2009) Common Terminology Criteria for Adverse Events (CTCAE) Version 4.0. available on http://ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.htm#ctc_40

  28. Andratschke N et al (2011) Stereotactic radiotherapy of histologically proven inoperable stage I non-small cell lung cancer: patterns of failure. Radiother Oncol 101:245–249

    Article  PubMed  Google Scholar 

  29. Wulf J et al (2004) Stereotactic radiotherapy for primary lung cancer and pulmonary metastases: a noninvasive treatment approach in medically inoperable patients. Int J Radiat Oncol Biol Phys 60:186–196

    Article  PubMed  Google Scholar 

  30. Timmerman R et al (2003) Extracranial stereotactic radioablation: results of a phase I study in medically inoperable stage I non-small cell lung cancer. Chest 124:1946–1955

    Article  PubMed  Google Scholar 

  31. Bradley JD et al (2010) Stereotactic body radiation therapy for early-stage non-small-cell lung cancer: the pattern of failure is distant. Int J Radiat Oncol Biol Phys 77:1146–1150

    Article  PubMed  Google Scholar 

  32. Oshiro Y et al (2010) Stereotactic body radiotherapy for lung tumors at the pulmonary hilum. Strahlenther Onkol 186:274–279

    Article  PubMed  Google Scholar 

  33. Baardwijk A van et al (2011) What is the radiation dose needed to eradicate stage I NSCLC with Stereotactic Radiotherapy (SBRT)? J Thorac Oncol 6:544

    Google Scholar 

  34. Hoppe BS et al (2008) Acute skin toxicity following stereotactic body radiation therapy for stage I non-small-cell lung cancer: who’s at risk? Int J Radiat Oncol Biol Phys 72:1283–1286

    Article  PubMed  Google Scholar 

  35. Borst GR et al (2009) Radiation pneumonitis in patients treated for malignant pulmonary lesions with hypofractionated radiation therapy. Radiother Oncol 91:307–313

    Article  PubMed  Google Scholar 

  36. Jin JY et al (2009) Impact of fraction size on lung radiation toxicity: hypofractionation may be beneficial in dose escalation of radiotherapy for lung cancers. Int J Radiat Oncol Biol Phys 76:782–788

    Article  PubMed  Google Scholar 

  37. Takeda A et al (2010) Early graphical appearance of radiation pneumonitis correlates with the severity of radiation pneumonitis after stereotactic body radiotherapy (SBRT) in patients with lung tumors. Int J Radiat Oncol Biol Phys 77:685–690

    Article  PubMed  Google Scholar 

  38. Hamamoto Y et al (2011) Relationship between pretreatment FDG uptake and local control after stereotactic body radiotherapy in stage I non-small-cell lung cancer: the preliminary results. Jpn J Clin Oncol 41:543–547

    Article  PubMed  Google Scholar 

  39. Nestle U et al (2009) Biological imaging in radiation therapy: role of positron emission tomography. Phys Med Biol 54:R1–R25

    Article  PubMed  Google Scholar 

  40. Waarde A van et al (2004) Selectivity of 18F-FLT and 18F-FDG for differentiating tumor from inflammation in a rodent model. J Nucl Med 45:695–700

    PubMed  Google Scholar 

  41. Vansteenkiste J, Dooms C (2007) Positron emission tomography in nonsmall cell lung cancer. Curr Opin Oncol 19:78–83

    Article  PubMed  Google Scholar 

  42. Baardwijk A van et al (2008) Individualized radical radiotherapy of non-small-cell lung cancer based on normal tissue dose constraints: a feasibility study. Int J Radiat Oncol Biol Phys 71:1394–1401

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Duncker-Rohr MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duncker-Rohr, V., Nestle, U., Momm, F. et al. Stereotactic ablative radiotherapy for small lung tumors with a moderate dose. Strahlenther Onkol 189, 33–40 (2013). https://doi.org/10.1007/s00066-012-0224-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-012-0224-y

Keywords

Schlüsselwörter

Navigation