Skip to main content
Log in

Palmare winkelstabile Verplattung von Pseudarthrosen und Trümmerfrakturen des Kahnbeins

Palmar angular stable plate fixation of nonunions and comminuted fractures of the scaphoid

  • Operative Techniken
  • Published:
Operative Orthopädie und Traumatologie Aims and scope Submit manuscript

Zusammenfassung

Operationsziel

Stabilisierung von Kahnbeinpseudarthrosen/Trümmerfrakturen mit palmarer winkelstabiler „Low-profile“-Skaphoidplatte.

Indikationen

Kahnbeinpseudarthrose mit großer beugeseitiger Defektzone, Zweit‑/Dritteingriff nach vorheriger Stabilisierung mittels Headless Compression Screw (HCS). Trümmerfrakturen des Kahnbeins, die mit einer HCS nicht ausreichend stabilisiert werden können.

Kontraindikationen

Fortgeschrittene Radio- oder Mediokarpalarthrose, kleine proximale Polfragmente, Mehrfachfragmentierung des proximalen Pols.

Operationstechnik

Über einen beugeseitigen Zugang wird die Kahnbeinpseudarthrose dargestellt. Nach Korrektur der DISI-Fehlstellung („dorsal intercalated segment instability“) des Lunatums sowie der Humpback-Deformität des Kahnbeins wird die Reposition mit temporären Bohrdrähten fixiert. Die Pseudarthrose wird angefrischt und der Knochendefekt mit Spongiosa aufgefüllt. Anschließend erfolgt die Platzierung der Platte und die Fixierung mit winkelstabilen Schrauben über je drei Schrauben im proximalen und distalen Fragment des Kahnbeins. Die Plattenanlage bei Trümmerfrakturen des Kahnbeins erfolgt analog zur Pseudarthrose nach vorheriger Reposition und temporärer Bohrdrahtfixation.

Weiterbehandlung

Ruhigstellung im Unterarmgips oder Kunststoffverband mit Einschluss des Daumengrundgelenks für 8 Wochen (sowohl Trümmerfrakturen als auch Pseudarthrosen). Keine schweren manuellen Tätigkeiten und Risiko‑/Kontaktsportarten für 12 Wochen. Plattenentfernung nach 6 Monaten bzw. knöcherner Heilung empfohlen.

Ergebnisse

Durch die Stabilisierung mit der winkelstabilen palmaren Skaphoidplatte können – bei richtiger Indikationsstellung – hohe Heilungsraten mit guten funktionellen Ergebnissen erzielt werden.

Abstract

Objective

Stabilization of comminuted fractures and nonunions of the scaphoid with an angular stable low-profile scaphoid plate.

Indications

Scaphoid nonunions with a large palmar defect, second and third surgical procedure after previous stabilization by headless compression screw (HCS). Comminuted fractures of the scaphoid that cannot be sufficiently stabilized by screws.

Contraindications

Radio- and midcarpal osteoarthritis, small proximal pole fragments, fragmentation of the proximal pole.

Surgical technique

The scaphoid is accessed by a palmar approach. After correcting the DISI (dorsal intercalated segment instability) deformity of the lunate and humpback deformity of the scaphoid, the reduction is secured by temporary Kirschner wires. The nonunion is debrided and the bone defect filled with cancellous bone graft. Subsequently the scaphoid plate and the angular stable screw are positioned in the order to place three screws in the proximal and distal fragment of the scaphoid. Comminuted fractures of the scaphoid are fixated by temporary Kirschner wires, then the plate is positioned in the same way as nonunions.

Postoperative management

Comminuted fractures and nonunions of the scaphoid are immobilized by a below-elbow cast or thermoplastic splint with inclusion of the thumb for 8 weeks. No heavy work, high-risk or contact sport activities for 12 weeks. Plate removal is recommended after 6 months or after bony healing.

Results

By stabilizing scaphoid nonunions with a plate, high union rates with good clinical outcome can be achieved if the indication is correct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10
Abb. 11
Abb. 12
Abb. 13
Abb. 14

Literatur

  1. Aibinder WR, Wagner ER, Bishop AT, Shin AY (2017) Bone grafting for scaphoid nonunions: is free vascularized bone grafting superior for scaphoid nonunion? Hand (N Y). https://doi.org/10.1177/1558944717736397

    Article  Google Scholar 

  2. Arora R, Gschwentner M, Krappinger D et al (2007) Fixation of nondisplaced scaphoid fractures: making treatment cost effective. Prospective controlled trial. Arch Orthop Trauma Surg 127:39–46. https://doi.org/10.1007/s00402-006-0229-z

    Article  CAS  PubMed  Google Scholar 

  3. Birnbaum K, Wirtz DC, Siebert CH, Heller KD (2002) Use of extracorporeal shock-wave therapy (ESWT) in the treatment of non-unions. A review of the literature. Arch Orthop Trauma Surg 122:324–330. https://doi.org/10.1007/s00402-001-0365-4

    Article  CAS  PubMed  Google Scholar 

  4. Braga-Silva J, Peruchi FM, Moschen GM et al (2008) A comparison of the use of distal radius vascularised bone graft and non-vascularised iliac crest bone graft in the treatment of non-union of scaphoid fractures. J Hand Surg Eur Vol 33:636–640. https://doi.org/10.1177/1753193408090400

    Article  CAS  PubMed  Google Scholar 

  5. Buijze GA, Ochtman L, Ring D (2012) Management of scaphoid nonunion. J Hand Surg Am 37:1095–1100. https://doi.org/10.1016/j.jhsa.2012.03.002

    Article  PubMed  Google Scholar 

  6. Bürger H, Gaggl AJ, Kukutschki W, Müller EJ (2009) Das freie mikrovaskuläre Knochentransplantat vom medialen Femurkondylus zur Behandlung der Kahnbeinpseudarthrose. Oper Orthop Traumatol 21:396–404. https://doi.org/10.1007/s00064-009-1902-5

    Article  PubMed  Google Scholar 

  7. Citak M, O’Loughlin PF, Kendoff D et al (2010) Navigated scaphoid screw placement using customized scaphoid splint: an anatomical study. Arch Orthop Trauma Surg 130:889–895. https://doi.org/10.1007/s00402-010-1044-0

    Article  PubMed  Google Scholar 

  8. Dacho A, Germann G, Sauerbier M (2004) Die Rekonstruktion von Skaphoidpseudarthrosen durch die Operation nach Matti-Russe. Unfallchirurg 107:388–396. https://doi.org/10.1007/s00113-004-0748-4

    Article  CAS  PubMed  Google Scholar 

  9. Dodds SD, Halim A (2016) Scaphoid plate fixation and volar carpal artery vascularized bone graft for recalcitrant scaphoid nonunions. J Hand Surg Am 41:e191–e198. https://doi.org/10.1016/j.jhsa.2016.04.021

    Article  PubMed  Google Scholar 

  10. Duckworth AD, Jenkins PJ, Aitken SA et al (2012) Scaphoid fracture epidemiology. J Trauma Acute Care Surg. https://doi.org/10.1097/TA.0b013e31822458e8

    Article  PubMed  Google Scholar 

  11. Ender HG (1977) A new method of treating traumatic cysts and pseudoarthrosis of the scaphoid (author’s transl). Unfallheilkunde 80:509–513

    CAS  PubMed  Google Scholar 

  12. Esteban-Feliu I, Barrera-Ochoa S, Vidal-Tarrason N et al (2018) Volar plate fixation to treat scaphoid nonunion: a case series with minimum 3 years of follow-up. J Hand Surg Am 43:569.e1–569.e8. https://doi.org/10.1016/j.jhsa.2017.12.004

    Article  Google Scholar 

  13. Euler S, Erhart S, Deml C et al (2014) The effect of delayed treatment on clinical and radiological effects of anterior wedge grafting for non-union of scaphoid fractures. Arch Orthop Trauma Surg 134:1023–1030. https://doi.org/10.1007/s00402-014-2007-7

    Article  PubMed  Google Scholar 

  14. Filan SL, Herbert TJ (1996) Herbert screw fixation of scaphoid fractures. J Bone Joint Surg Br 78:519–529

    Article  CAS  Google Scholar 

  15. Gabl M, Pechlaner S, Zimmermann R (2009) Die Rekonstruktion der Kahnbeinpseudarthrose mit avaskulärem proximalen Fragment mit freiem mikrovaskulär gestielten Beckenkammtransplantat. Oper Orthop Traumatol 21:386–395. https://doi.org/10.1007/s00064-009-1909-y

    Article  PubMed  Google Scholar 

  16. Garg B, Goyal T, Kotwal PP et al (2013) Local distal radius bone graft versus iliac crest bone graft for scaphoid nonunion: a comparative study. Musculoskelet Surg 97:109–114. https://doi.org/10.1007/s12306-012-0219-y

    Article  PubMed  Google Scholar 

  17. Gelberman RH, Menon J (1980) The vascularity of the scaphoid bone. J Hand Surg Am 5:508–513. https://doi.org/10.1016/S0363-5023(80)80087-6

    Article  CAS  PubMed  Google Scholar 

  18. Goodwin J, Castañeda P, Drace P, Edwards S (2017) A biomechanical comparison of screw and plate fixations for scaphoid fractures. J Wrist Surg. https://doi.org/10.1055/s-0037-1606123

    Article  PubMed  PubMed Central  Google Scholar 

  19. Griffis CE, Olsen C, Nesti L et al (2017) Validity of computed tomography in predicting scaphoid screw prominence: a cadaveric study. Arch Orthop Trauma Surg 137:573–577. https://doi.org/10.1007/s00402-017-2658-2

    Article  PubMed  Google Scholar 

  20. Hannemann PFW, Brouwers L, Dullaert K et al (2015) Determining scaphoid waist fracture union by conventional radiographic examination: an analysis of reliability and validity. Arch Orthop Trauma Surg 135:291–296. https://doi.org/10.1007/s00402-014-2147-9

    Article  CAS  PubMed  Google Scholar 

  21. Hernekamp J-F, Kneser U, Kremer T, Bickert B (2017) Mediokarpale Teilarthrodese mit winkelstabiler Plattenosteosynthese. Oper Orthop Traumatol 29:409–415. https://doi.org/10.1007/s00064-017-0514-8

    Article  PubMed  Google Scholar 

  22. Huene DR, Huene DS (1991) Treatment of nonunions of the scaphoid with the Ender compression blade plate system. J Hand Surg Am 16:913–922. https://doi.org/10.1016/S0363-5023(10)80160-1

    Article  CAS  PubMed  Google Scholar 

  23. Inoue G, Sakuma M (1996) The natural history of scaphoid non-union. Arch Orthop Trauma Surg 115:1–4. https://doi.org/10.1007/BF00453208

    Article  CAS  PubMed  Google Scholar 

  24. Jones DB, Bürger H, Bishop AT, Shin AY (2009) Treatment of scaphoid waist nonunions with an avascular proximal pole and carpal collapse. Surgical technique. J Bone Joint Surg Am 91(Suppl 2):169–183. https://doi.org/10.2106/JBJS.I.00444

    Article  PubMed  Google Scholar 

  25. Jurkowitsch J, Dall’Ara E, Quadlbauer S et al (2016) Rotational stability in screw-fixed scaphoid fractures compared to plate-fixed scaphoid fractures. Arch Orthop Trauma Surg 136:1623–1628. https://doi.org/10.1007/s00402-016-2556-z

    Article  PubMed  Google Scholar 

  26. Kawamura K, Chung KC (2008) Treatment of scaphoid fractures and nonunions. J Hand Surg Am 33:988–997. https://doi.org/10.1016/j.jhsa.2008.04.026

    Article  PubMed  PubMed Central  Google Scholar 

  27. Langer MF, Unglaub F, Breiter S et al (2019) Anatomie und Pathobiomechanik des Skaphoids. Unfallchirurg. https://doi.org/10.1007/s00113-018-0597-1

    Article  PubMed  Google Scholar 

  28. Leixnering M, Pezzei C, Weninger P et al (2011) First experiences with a new adjustable plate for osteosynthesis of scaphoid nonunions. J Trauma 71:933–938. https://doi.org/10.1097/TA.0b013e3181f65721

    Article  CAS  PubMed  Google Scholar 

  29. Lynch NM, Linscheid RL (1997) Corrective osteotomy for scaphoid malunion: technique and long-term follow-up evaluation. J Hand Surg Am 22:35–43. https://doi.org/10.1016/S0363-5023(05)80177-7

    Article  CAS  PubMed  Google Scholar 

  30. Mallee WH, Mellema JJ, Guitton TG et al (2016) 6-week radiographs unsuitable for diagnosis of suspected scaphoid fractures. Arch Orthop Trauma Surg 136:771–778. https://doi.org/10.1007/s00402-016-2438-4

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mandaleson A, Tham SK, Lewis C et al (2017) Scaphoid fracture fixation in a nonunion model: a biomechanical study comparing 3 types of fixation. J Hand Surg Am. https://doi.org/10.1016/j.jhsa.2017.10.005

    Article  PubMed  Google Scholar 

  32. Megerle K, Keutgen X, Müller M et al (2008) Treatment of scaphoid non-unions of the proximal third with conventional bone grafting and mini-Herbert screws: an analysis of clinical and radiological results. J Hand Surg Eur Vol 33:179–185. https://doi.org/10.1177/1753193408087030

    Article  PubMed  Google Scholar 

  33. Megerle K, Worg H, Christopoulos G et al (2011) Gadolinium-enhanced preoperative MRI scans as a prognostic parameter in scaphoid nonunion. J Hand Surg Eur Vol 36:23–28. https://doi.org/10.1177/1753193410375776

    Article  CAS  PubMed  Google Scholar 

  34. Mehling I, Sauerbier M (2013) Skaphoidfrakturen und Skaphoidpseudarthrosen. Z Orthop Unfall 151:639–660. https://doi.org/10.1055/s-0033-1360131

    Article  CAS  PubMed  Google Scholar 

  35. Meszaros T, Vögelin E, Mathys L, Leclère FM (2018) Perilunate fracture-dislocations: clinical and radiological results of 21 cases. Arch Orthop Trauma Surg 138:287–297. https://doi.org/10.1007/s00402-017-2861-1

    Article  PubMed  Google Scholar 

  36. Muramatsu K, Doi K, Kuwata N et al (2002) Scaphoid fracture in the young athlete—therapeutic outcome of internal fixation using the Herbert screw. Arch Orthop Trauma Surg 122:510–513. https://doi.org/10.1007/s00402-002-0417-4

    Article  PubMed  Google Scholar 

  37. Neshkova IS, Jakubietz RG, Kuk D et al (2015) Percutaneous screw fixation of non- or minimally displaced scaphoid fractures. Oper Orthop Traumatol 27:448–454. https://doi.org/10.1007/s00064-014-0325-0

    Article  CAS  PubMed  Google Scholar 

  38. Neubrech F, Terzis A, Seegmüller J, Sauerbier M (2018) Diagnostics and treatment of acute scaphoid fractures. Unfallchirurg. https://doi.org/10.1007/s00113-018-0588-2

    Article  Google Scholar 

  39. Pinder RM, Brkljac M, Rix L et al (2015) Treatment of scaphoid nonunion: a systematic review of the existing evidence. J Hand Surg Am 40:1797–1805. https://doi.org/10.1016/j.jhsa.2015.05.003

    Article  PubMed  Google Scholar 

  40. Prosser GH, Isbister ES (2003) The presentation of scaphoid non-union. Injury 34:65–67

    Article  CAS  Google Scholar 

  41. Quadlbauer S, Beer T, Pezzei C et al (2017) Stabilization of scaphoid type B2 fractures with one or two headless compression screws. Arch Orthop Trauma Surg 137:1587–1595. https://doi.org/10.1007/s00402-017-2786-8

    Article  CAS  PubMed  Google Scholar 

  42. Quadlbauer S, Pezzei C, Beer T et al (2018) Treatment of scaphoid waist nonunion by one, two headless compression screws or plate with or without additional extracorporeal shockwave therapy. Arch Orthop Trauma Surg. https://doi.org/10.1007/s00402-018-3087-6

    Article  PubMed  Google Scholar 

  43. Quadlbauer S, Pezzei C, Jurkowitsch J et al (2017) Spontaneous radioscapholunate fusion after septic arthritis of the wrist: a case report. Arch Orthop Trauma Surg 137:579–584. https://doi.org/10.1007/s00402-017-2659-1

    Article  CAS  PubMed  Google Scholar 

  44. Rancy SK, Swanstrom MM, DiCarlo EF et al (2018) Success of scaphoid nonunion surgery is independent of proximal pole vascularity. J Hand Surg Eur Vol 43:32–40. https://doi.org/10.1177/1753193417732003

    Article  PubMed  Google Scholar 

  45. Roh YH, Noh JH, Lee BK et al (2014) Reliability and validity of carpal alignment measurements in evaluating deformities of scaphoid fractures. Arch Orthop Trauma Surg 134:887–893. https://doi.org/10.1007/s00402-014-1998-4

    Article  PubMed  Google Scholar 

  46. Sauerbier M, Bishop AT, Ofer N (2009) Gestielte vaskularisierte Knochentransplantate von der Streckseite des peripheren Speichenendes zur Skaphoidrekonstruktion. Oper Orthop Traumatol 21:373–385. https://doi.org/10.1007/s00064-009-1908-z

    Article  PubMed  Google Scholar 

  47. Schädel-Höpfner M, Marent-Huber M, Gazyakan E et al (2010) Acute non-displaced fractures of the scaphoid: earlier return to activities after operative treatment. A controlled multicenter cohort study. Arch Orthop Trauma Surg 130:1117–1127. https://doi.org/10.1007/s00402-009-1004-8

    Article  PubMed  Google Scholar 

  48. Schmidle G, Ebner HL, Klauser AS et al (2018) Correlation of CT imaging and histology to guide bone graft selection in scaphoid non-union surgery. Arch Orthop Trauma Surg. https://doi.org/10.1007/s00402-018-2983-0

    Article  PubMed  PubMed Central  Google Scholar 

  49. Schmitt R, Van Schoonhoven J (2015) Skaphoidpseudarthrose. In: Schmitt R, Lanz U (Hrsg) Bild. Diagnostik der Hand, 3. Aufl. Thieme, Stuttgart, S 297–308

    Google Scholar 

  50. Singh HP, Taub N, Dias JJ (2012) Management of displaced fractures of the waist of the scaphoid: Meta-analyses of comparative studies. Injury 43:933–939. https://doi.org/10.1016/j.injury.2012.02.012

    Article  CAS  PubMed  Google Scholar 

  51. Slade JF, Geissler WB, Gutow AP, Merrell GA (2003) Percutaneous internal fixation of selected scaphoid nonunions with an arthroscopically assisted dorsal approach. J Bone Joint Surg Am 85-A(Suppl 4):20–32

    Article  Google Scholar 

  52. Spies CK, Hohendorff B, Müller LP et al (2016) Proximal carpal row carpectomy. Oper Orthop Traumatol 28:204–217. https://doi.org/10.1007/s00064-016-0440-1

    Article  CAS  PubMed  Google Scholar 

  53. Wang CJ, Liu HC, Fu TH (2007) The effects of extracorporeal shockwave on acute high-energy long bone fractures of the lower extremity. Arch Orthop Trauma Surg 127:137–142. https://doi.org/10.1007/s00402-006-0236-0

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Quadlbauer.

Ethics declarations

Interessenkonflikt

S. Quadlbauer, C. Pezzei, J. Jurkowitsch, H. Krimmer, M. Sauerbier, T. Hausner und M. Leixnering geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

F. Unglaub, Bad Rappenau

Zeichner

R. Himmelhan, Mannheim

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quadlbauer, S., Pezzei, C., Jurkowitsch, J. et al. Palmare winkelstabile Verplattung von Pseudarthrosen und Trümmerfrakturen des Kahnbeins. Oper Orthop Traumatol 31, 433–446 (2019). https://doi.org/10.1007/s00064-019-00623-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00064-019-00623-0

Schlüsselwörter

Keywords

Navigation