Skip to main content
Log in

Precision of implementing virtual setups for orthodontic treatment using CAD/CAM-fabricated custom archwires

Umsetzungsgenauigkeit virtueller Set-ups mit CAD/CAM-gefertigten Bögen

  • Original Article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Objectives

The SureSmile® process (OraMetrix®; Richardson, TX, USA) utilizes computer-aided design and computer-aided manufacturing (CAD/CAM). A virtual setup is created for treatment planning and chairside implementation using custom archwires fabricated by robots. The objective of this study was to determine the precision of this implementation.

Methods

The setup models of 26 consecutive patients were compared to models of the final outcome. Using a virtual matching process, the planned and the achieved tooth positions were superimposed and the differences between them calculated along three translational planes and three rotational axes, thus, yielding six deviation values for each tooth.

Results

The median deviations were 0.19–0.21 mm based on translational movements and 1.77°–3.04° based on rotational movements. The precision of implementing the setups decreased from anterior to posterior, with incisors showing the best outcomes.

Conclusion

Virtual setups can be implemented in a clinically successful fashion with custom archwires fabricated by CAD/CAM in accordance with the SureSmile® process.

Zusammenfassung

Zielsetzung

Das untersuchte SureSmile-System (OraMetrix®, Richardson, Texas, USA) ist ein CAD/CAM-unterstütztes Verfahren, bei dem zur Behandlungsplanung ein virtuelles Set-up erstellt und dieses mit individuellen, robotergefertigten Bögen am Patienten umgesetzt wird. Ziel der Studie war es, die Präzision dieser Umsetzung zu bestimmen.

Material und Methode

Verglichen wurden hierfür die Set-up- und Abschlussmodelle von 26 konsekutiv behandelten Patienten. Geplante und tatsächlich erreichte Position wurden in einem virtuellen Matchingprozess überlagert und die Abweichungen in drei Ebenen und drei Achsen berechnet.

Ergebnisse

Ergebnis der Überlagerung waren sechs Messwerte für jedes korrespondierende Zahnpaar, die die Differenzen zwischen Set-up und Endsituation repräsentierten. Die mittleren Translationsabweichungen lagen zwischen 0.26 und 0.29 mm, die mittleren Rotationsabweichungen zwischen 2.75° und 3.89°. Das Set-up wurde an den Inzisivi am genauesten umgesetzt, von anterior nach posterior nahm die Präzision ab.

Schlussfolgerung

Mit Hilfe der CAD/CAM-gefertigten Bögen des SureSmile-Systems kann das Set-up klinisch erfolgreich umgesetzt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Balut N, Klapper L, Sandrik J et al (1992) Variations in bracket placement in the preadjusted orthodontic appliance. Am J Orthod Dentofacial Orthop 102:62–67

    Article  PubMed  Google Scholar 

  2. Breidenbach V, Schwestka-Polly R, Wiechmann D (2012) Ergebnisqualität von Laborprozessen in der Lingualtechnik: Vergleich der gängigen Verfahren. Inf Orthod Kieferorthop 44:99–112

    Article  Google Scholar 

  3. Bryant RM, Sadowsky PL, Hazelrig JB (1984) Variability in three morphologic features of the permanent maxillary central incisor. Am J Orthod Dentofacial Orthop 86:25–32

    Article  Google Scholar 

  4. Cash AC, Good SA, Curtis RV et al (2004) An evaluation of slot size in orthodontic brackets—are standards as expected? Angle Orthod 74:450–453

    PubMed  Google Scholar 

  5. Creekmore TD (1979) Dr. Thomas D. Creekmore on torque. J Clin Orthod 13:305–310

    PubMed  Google Scholar 

  6. Dahlberg G (1940) Statistical methods for medical and biological students. Interscience Publication, New York

    Google Scholar 

  7. Germane N, Bentley BE, Isaacson RJ (1989) Three biologic variables modifying faciolingual tooth angulation by straight-wire appliances. Am J Orthod Dentofacial Orthop 96:312–319

    Article  PubMed  Google Scholar 

  8. Grauer D, Proffit WR (2011) Accuracy in tooth positioning with a fully customized lingual orthodontic appliance. Am J Orthod Dentofacial Orthop 140:433–443

    Article  PubMed  Google Scholar 

  9. Jost-Brinkmann P, Gunawan A, Knieknecht A et al (2000) Bracketplatzierung mit der Slot-Machine. Kieferorthop 14:197–204

    Google Scholar 

  10. Kravitz ND, Kusnoto B, BeGole E et al (2009) How well does Invisalign work? A prospective clinical study evaluating the efficacy of tooth movement with Invisalign. Am J Orthod Dentofacial Orthop 135:27–35

    Article  PubMed  Google Scholar 

  11. Krieger E, Seiferth J, Marinello I et al (2012) Invisalign treatment in the anterior region: were the predicted tooth movements achieved? J Orofac Orthop 73:365–376

    Article  PubMed  Google Scholar 

  12. Krieger E, Seiferth J, Saric I et al (2011) Accuracy of Invisalign treatments in the anterior tooth region. First results. J Orofac Orthop 72:141–149

    Article  PubMed  Google Scholar 

  13. Larson BE, Vaubel CJ, Grunheid T (2013) Effectiveness of computer-assisted orthodontic treatment technology to achieve predicted outcomes. Angle Orthod 83:557–562

    Article  PubMed  Google Scholar 

  14. Mah J, Sachdeva R (2001) Computer-assisted orthodontic treatment: the SureSmile process. Am J Orthod Dentofacial Orthop 120:85–87

    Article  PubMed  Google Scholar 

  15. Meling TR, Odegaard J, Segner D (1998) On bracket slot height: a methodologic study. Am J Orthod Dentofacial Orthop 113:387–393

    PubMed  Google Scholar 

  16. Müller-Hartwich R, Präger TM, Jost-Brinkmann P (2007) SureSmile - CAD/CAM system for orthodontic treatment planning, simulation and fabrication of customized archwires. Int J Comput Dent 10:53–62

    PubMed  Google Scholar 

  17. Pauls AH (2010) Therapeutic accuracy of individualized brackets in lingual orthodontics. J Orofac Orthop 71:348–361

    Article  PubMed  Google Scholar 

  18. Thalheim A, Schwestka-Polly R (2008) Clinical Realisation of a Setup in Lingual Orthodontics. Inf Orthod Kieferorthop 40:277–282

    Article  Google Scholar 

  19. Weber DJ, Koroluk LD, Phillips C et al (2013) Clinical effectiveness and efficiency of customized vs. conventional preadjusted bracket systems. J Clin Orthod 47:261–266

    PubMed  Google Scholar 

  20. Wiechmann D (2002) A new bracket system for lingual orthodontic treatment. Part 1: theoretical background and development. J Orofac Orthop 63:234–245

    Article  PubMed  Google Scholar 

  21. Wiechmann D (2003) A new bracket system for lingual orthodontic treatment. Part 2: first clinical experiences and further development. J Orofac Orthop 64:372–388

    Article  PubMed  Google Scholar 

  22. Wong BH (2002) Invisalign A to Z. Am J Orthod Dentofacial Orthop 121:540–541

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Schubert.

Ethics declarations

Conflict of interest

Ralf Müller-Hartwich, Paul-Georg Jost-Brinkmann and Katharina Schubert state that there are no conflicts of interest.

Ethical statement

The accompanying manuscript does not include studies on humans or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller-Hartwich, R., Jost-Brinkmann, PG. & Schubert, K. Precision of implementing virtual setups for orthodontic treatment using CAD/CAM-fabricated custom archwires. J Orofac Orthop 77, 1–8 (2016). https://doi.org/10.1007/s00056-015-0001-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-015-0001-5

Keywords

Schlüsselwörter

Navigation