Skip to main content
Log in

Intracolonial genetic variability in honeybee larval resistance to the chalkbrood and American foulbrood parasites

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

The origin of multiple mating of queens in social Hymenoptera is a widely debated topic in evolutionary biology. One of the hypotheses is that genetic variability would benefit the colony by increasing its resistance to parasites through various mechanisms. One among the predictions of this hypothesis is that the resistance of different patrilines within a colony to parasites of different species should be independent, as a result of independent gene-for-gene interactions with each parasite. To test this aspect of the hypothesis, two honeybee colonies (Apis mellifera) were infected with the fungus Ascosphaera apis and two colonies with both A. apis and the American foulbrood bacterium Paenibacillus larvae. Patrilines were found to vary in resistance of larvae to A. apis in all four colonies, but similar variation in resistance was not found to P. larvae. Common resistance to both pathogens was not detected. This study supports the hypothesis that polyandry in social insects could have originated as an adaptation to decrease the impact of diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Baalen M. van and Beekman M. 2006. The costs and benefits of genetic heterogeneity in resistance against parasites in social insects. Am. Nat. 167: 568–577

    Article  PubMed  Google Scholar 

  • Baer B. and Schmid-Hempel P. 1999. Experimental variation in polyandry affects parasite loads and fitness in a bumble-bee. Nature 397: 151–154

    Article  CAS  Google Scholar 

  • Baer B. and Schmid-Hempel P. 2001. Unexpected consequences of polyandry for parasitism and fitness in the bumblebee, Bombus terrestris. Evolution 55: 1639–1643

    PubMed  CAS  Google Scholar 

  • Baer B. and Schmid-Hempel P. 2003. Bumblebee workers from different sire groups vary in susceptibility to parasite infection. Ecol. Lett. 6: 106–110

    Article  Google Scholar 

  • Bailey L. and Ball B.V. 1991. Honey Bee Pathology. Academic Press, London. 208 pp

    Google Scholar 

  • Beekman M. and Ratnieks F.L.W. 2003. Power over reproduction in the social Hymenoptera. Phil. Trans. R. Soc. Lond. 358: 1741–1753

    Article  Google Scholar 

  • Beekman M. and Oldroyd B.P. 2008. When workers disunite: intraspecific parasitism by eusocial bees. Annu. Rev. Entomol. 53: 19–37

    Article  PubMed  CAS  Google Scholar 

  • Boomsma J.J. and Grafen A. 1991. Colony-level sex ratio selection in the eusocial Hymenoptera. J. Evol. Biol. 3: 383–407

    Article  Google Scholar 

  • Boomsma J.J. and Ratnieks F.L.W. 1996. Paternity in social Hymenoptera. Philos. Trans. R. Soc. Lond. B 351: 947–975

    Article  Google Scholar 

  • Cole B.J. and Wiernasz D.C. 1999. The selective advantage of low relatedness. Science 285: 891–893

    Article  PubMed  CAS  Google Scholar 

  • Cole B.J. and Wiernasz D.C. 2000. Colony size and reproduction in the western harvester ant, Pogonomyrmex occidentalis. Insect. Soc. 47: 249–255

    Article  Google Scholar 

  • Crozier R.H. and Page R.E. 1985. On being the right size: male contributions and multiple mating in social Hymenoptera. Behav. Ecol. Sociobiol. 18: 105–115

    Article  Google Scholar 

  • Crozier R.H. and Pamilo P. 1996. Evolution of Social Insect Colonies: Sex Allocation and Kin Selection. Oxford University Press, Oxford. 306 pp

    Google Scholar 

  • Crozier R.H. and Fjerdingstad E.J. 2001. Polyandry in social Hymenoptera – disunity in diversity? Ann. Zool. Fenn. 38: 267–285

    Google Scholar 

  • Costa J.T. and Ross K.G. 2003. Fitness effects of group merging in a social insect. Proc. R. Soc. Lond. B 270: 1697–1702

    Article  Google Scholar 

  • Denny A.J., Franks N.R., Powell S. and Edwards K.J. 2004. Exceptionally high levels of multiple mating in an army ant. Naturwissenschaften 91: 396–399

    Article  PubMed  CAS  Google Scholar 

  • Ebert D. and Hamilton W.D. 1996. Sex against virulence: the coevolution of parasitic diseases. Trends Ecol. Evol. 11: 79–82

    Article  Google Scholar 

  • Estoup A., Solignac M. and Cournet J.M. 1994. Precise assessment of the number of patrilines and of genetic relatedness in honeybee colonies. Proc. R. Soc. Lond. B 258: 1–7

    Article  CAS  Google Scholar 

  • Evans J.D. and Armstrong T.N. 2006. Antagonistic interactions between honey bee bacterial symbionts and implications for disease. BMC Ecol. 6: 4

    Article  PubMed  Google Scholar 

  • Fjerdingstad E.J. and Boomsma J.J. 2000. Queen mating frequency and relatedness in young Atta sexdens colonies. Insect. Soc. 47: 354–356

    Article  Google Scholar 

  • Fuchs S. and Schade V. 1994. Lower performance in honeybee colonies of uniform paternity. Apidologie 25: 155–168

    Article  Google Scholar 

  • Gilliam M., Taber S. III, Lorenz B. and Prest D.B. 1988. Factors affecting development of chalkbrood disease in colonies of honey bees, Apis mellifera, fed pollen contaminated with Ascosphaera apis. J. Invert. Pathol. 52: 314–325

    Article  Google Scholar 

  • Goodisman M.A.D., Kovaks J.L. and Hoffman E.A. 2007. The significance of multiple mating in the social wasp Vespula maculifrons. Evolution 61: 2260–2267

    Article  PubMed  Google Scholar 

  • Hamilton W.D. 1964. The genetical evolution of social behavior, I and II. J. Theor. Biol. 7: 1–52

    Article  PubMed  CAS  Google Scholar 

  • Hamilton W.D. 1972. Altruism and related phenomena, mainly in social insects. Annu. Rev. Ecol. Syst. 3: 193–232

    Article  Google Scholar 

  • Hamilton W.D. 1987. Kinship, recognition, disease, and intelligence: constraints of social evolution. In: Animal Societies: Theory and Facts (Ito Y., Brown J.L. and Kikkawa J., Eds), Japanese Scientific Society Press, Tokyo. pp 81–102

    Google Scholar 

  • Hamilton W.D., Axelrod R. and Tanese R. 1990. Sexual reproduction as an adaptation to resist parasites (a review). Proc. Natl. Acad. Sci. USA 87: 3566–3573

    Article  PubMed  CAS  Google Scholar 

  • Harati H.S. and Spivak M. 2001. Influence of colony genotypic composition on the performance of hygienic behaviour in the honeybee, Apis mellifera L. Anim. Behav. 62: 57–66

    Article  Google Scholar 

  • Hughes W.O.H., Eilenberg J. and Boomsma J.J. 2002. Trade-offs in group living: transmission and disease resistance in leaf-cutting ants. Proc. R. Soc. Lond. B 269: 1811–1819

    Article  Google Scholar 

  • Hughes W.O.H. and Boomsma J.J. 2004. Genetic diversity and disease resistance in leaf-cutting ant societies. Evolution 58: 1251–1260

    PubMed  Google Scholar 

  • Hughes W.O.H. and Boomsma J.J. 2006. Does genetic diversity hinder parasite evolution in social insect colonies? J. Evol. Biol. 19: 132–143

    Article  PubMed  CAS  Google Scholar 

  • Hughes W.O.H., Oldroyd B.P., Beekman M. and Ratnieks F.L.W. 2008. Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320: 1213–1216

    Article  PubMed  CAS  Google Scholar 

  • Jennions M.D. and Petrie M. 2000. Why do females mate multiply? A review of the genetic benefits. Biol. Rev. 75: 21–64

    Article  PubMed  CAS  Google Scholar 

  • Keller L. and Revee H.K. 1994. Genetic variability, queen number, and polyandry in social Hymenoptera. Evolution 48: 694–704

    Article  Google Scholar 

  • Kraus B. and Page R.E. Jr. 1998. Parasites, pathogens, and polyandry in social insects. Am. Nat. 151: 383–391

    Article  PubMed  CAS  Google Scholar 

  • Kronauer D.J.C., Schöning C., Pedersen J.S., Boomsma J.J. and Gadau J. 2004. Extreme queen-mating frequency and colony fission in African army ants. Mol. Ecol. 13: 2381–2388

    Article  PubMed  Google Scholar 

  • Liersch S. and Schmid-Hempel P. 1998. Genetic variation within social insect colonies reduces parasite load. Proc. R. Soc. Lond. B 265: 221–225

    Article  Google Scholar 

  • Mattila H.R. and Seeley T.D. 2007. Genetic diversity in honey bee colonies enhances productivity and fitness. Science 317: 362–364

    Article  PubMed  CAS  Google Scholar 

  • Maynard Smith J. 1971. What use is sex? J. Theor. Biol. 30: 319–335

    Article  Google Scholar 

  • Miller S.A., Dikes D.D. and Polesky H.F. 1988. A simple salting out procedure for extracting DNA for human nucleated cells. Nucleic Acids Res. 16: 215

    Google Scholar 

  • Murakami T., Higashi S. and Windsor D. 2000. Mating frequency, colony size, polyethism and sex ratio in fungus-growing ants (Attini). Behav. Ecol. Sociobiol. 48: 276–284

    Article  Google Scholar 

  • Neumann P. and Moritz R.F.A. 2000. Testing genetic variance hypotheses for the evolution of polyandry in the honeybee (Apis mellifera L.). Insect. Soc. 47: 271–279

    Article  Google Scholar 

  • Oldroyd B.P., Rinderer T.E. and Buco S.M. 1992. Intra-colonial foraging specialism by honey bees (Apis mellifera). Behav. Ecol. Sociobiol. 30: 291–295

    Article  Google Scholar 

  • Ortius-Lechner D., Maile R., Morgan E.D., Petersen H.C. and Boomsma J.J. 2003. Lack of patriline-specific differences in chemical composition of the metapleural gland secretion in Acromyrmex octospinosus. Insect. Soc. 50: 113–119

    Article  Google Scholar 

  • Page R.E. 1986. Sperm utilization in social insects. Ann. Rev. Entomol. 31: 297–320

    Article  Google Scholar 

  • Page R.E., Robinson G.E., Fondrk M.K. and Nasr M.E. 1995. Effects of worker genotypic diversity on honey bee colony development and behavior (Apis mellifera L.). Behav. Ecol. Sociobiol. 36: 387–396

    Article  Google Scholar 

  • Palmer K.A. and Oldroyd B.P. 2000. Evolution of multiple mating in the genus Apis. Apidologie 31: 235–248

    Article  Google Scholar 

  • Palmer K.A. and Oldroyd B.P. 2003. Evidence for intra-colonial genetic variance in resistance to American foulbrood of honey bees (Apis mellifera): further support for the parasite/pathogen hypothesis for the evolution of polyandry. Naturwissenschaften 90: 265–268

    Article  PubMed  CAS  Google Scholar 

  • Ratnieks F.L.W. 1988. Reproductive harmony via mutual policing by workers in eusocial Hymenoptera. Am. Nat. 132: 217–236

    Article  Google Scholar 

  • Ratnieks F.L.W., Foster K.R. and Wenseleers T. 2006. Conflict resolution in insect societies. Annu. Rev. Entomol. 51: 581–608

    Article  PubMed  CAS  Google Scholar 

  • Reber A., Castella G., Christe P. and Chapuisat M. 2008. Experimentally increased group diversity improves disease resistance in an ant species. Ecol. Lett. 11: 682–689

    Article  PubMed  Google Scholar 

  • Rehindt F.E., Gadau J., Strehl C.P. and Hölldobler B. 2004. Extremely high mating frequency in the Florida harvester ant (Pogonomyrmex badius). Behav. Ecol. Sociobiol. 56:219–225

    Google Scholar 

  • Robinson G.E. and Page R.E. 1995. Genotypic constraints on plasticity for corpse removal in honey bee colonies. Anim. Behav. 49: 867–876

    Article  Google Scholar 

  • Ross K.G. 1986. Kin selection and the problem of sperm utilization in social insects. Nature 323: 798–800

    Article  Google Scholar 

  • Rosset H., Keller L. and Chapuisat M. 2005. Experimental manipulation of colony genetic diversity had no effect on short-term task efficiency in the Argentine ant Linepithema humile. Behav. Ecol. Sociobiol. 58: 87–98

    Article  Google Scholar 

  • Sanguinetti C.J., Días Neto E., Simpson A.J. 1994. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17: 914–921

    PubMed  CAS  Google Scholar 

  • Schmid-Hempel P. 1994. Infection and colony variability in social insects. Philos. Trans. R. Soc. Lond. B 346: 313–321

    Article  Google Scholar 

  • Schmid-Hempel P. 1998. Parasites in Social Insects. Princeton University Press,. Princeton, NJ. 392 pp

    Google Scholar 

  • Schmid-Hempel P. and Crozier R.H. 1999. Polyandry versus polygyny versus parasites. Philos. Trans. R. Soc. Lond. B 354: 507–515

    Article  Google Scholar 

  • Seeley T.D. and Tarpy D.R. 2007. Queen promiscuity lowers disease within honeybee colonies. Proc. R. Soc. Lond. B 274: 67–72

    Article  Google Scholar 

  • Sherman P.W., Seeley T.D. and Reeve H.K. 1988. Parasites, pathogens, and polyandry in social Hymenoptera. Am. Nat. 131: 602–610

    Article  Google Scholar 

  • Sherman P.W., Seeley T.D. and Reeve H.K. 1998. Parasites, pathogens, and polyandry in honey bees. Am. Nat. 151: 392–396

    Article  PubMed  CAS  Google Scholar 

  • Shykoff J.A. and Schmid-Hempel P. 1991. Parasites and the advantage of genetic variability within social insect colonies. Proc. R. Soc. Lond. B 243: 55–58

    Article  Google Scholar 

  • Strassmann J. 2001. The rarity of multiple mating by females in the social Hymenoptera. Insect. Soc. 48: 1–13

    Article  Google Scholar 

  • Sumner S., Hughes W.O.H., Pedersen J.S. and Boomsma J.J. 2004. Ant parasite queens revert to mating singly. Nature 428: 35–36

    Article  PubMed  CAS  Google Scholar 

  • Sundström L. 1994. Sex ratio bias, relatedness asymmetry and queen mating frequency in ants. Nature 367: 266–268

    Article  Google Scholar 

  • Sundström L. and Ratnieks F.L.W. 1998. Sex ratio conflicts, mating frequency, and queen fitness in the ant Formica truncorum. Behav. Ecol. 9: 116–121

    Article  Google Scholar 

  • Tarpy D.R. 2003. Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth. Proc. R. Soc. Lond. B 270: 99–103

    Article  Google Scholar 

  • Tarpy D.R. and Seeley T.D. 2006. Lower disease infections in honeybee (Apis mellifera) colonies headed by polyandrous vs. monoandrous queen. Naturwissenschaften 93: 195–199

    Article  PubMed  CAS  Google Scholar 

  • Trivers R.L. and Hare H. 1976. Haplodiploidy and the evolution of social insects. Science 191: 249–263

    Article  PubMed  CAS  Google Scholar 

  • Wiernasz D.C., Perroni C.L. and Cole B.J. 2004. Polyandry and fitness in the western harvester ant, Pogonomyrmex occidentalis. Mol. Ecol. 13: 1601–1606

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Enrique Lessa, Ben Oldroyd and two anonymous reviewers for helpful comments on the manuscript. This research was supported by Comisión Sectorial de Investigación Científica, Universidad de la República.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Invernizzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Invernizzi, C., Peñagaricano, F. & Tomasco, I.H. Intracolonial genetic variability in honeybee larval resistance to the chalkbrood and American foulbrood parasites. Insect. Soc. 56, 233–240 (2009). https://doi.org/10.1007/s00040-009-0016-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-009-0016-2

Keywords

Navigation