Skip to main content

Aphids

  • Chapter
  • First Online:
Polyphagous Pests of Crops

Abstract

The aphids are soft-bodied small insects (< 7 mm) and feed by sucking plant sap. They usually live in colonies on the undersides of leaves or tender terminal shoots. Aphids excrete considerable amount of sugary liquid, honeydew, on which sooty mould usually turns them black and also serves as food for ants, bees and their parasitic wasps. The aphids are unique on the account of their peculiar mode of reproduction, development and polymorphism. They may reproduce either by parthenogenesis, zygogenesis or paedogenesis. They may either be oviparous or viviparous and alatae or apterae, the male often being wanting and frequently rare in certain generations. Parthenogenetic reproduction allows rapid increase in numbers and results in populations consisting of clones. Some species reproduce both parthenogenetically and sexually (holocyclic species), whereas only few reproduce parthenogenetically (anholocyclic species). In parthenogenetic reproduction, life cycle completes within 10 days in temperate regions. The aphids are polymorphic, and both winged (alate) and wingless (aptera) morphs may be found in the same colony. Several factors, both biotic and abiotic, have effect on the formation of different phenotypes. Each morph performs different ecological roles in the life history which is characteristic of aphids. This trait coupled with the ability to breed by means of diploid parthenogenesis and viviparity for a major part of the life cycle in aphids has enabled them to produce a large number of clones in different kinds of plants even under adverse conditions. Aphids are frequently engaged in mutualistic associations with bacterial endosymbionts that not only provide essential amino acids to them but also grant them protection from natural enemies, protection from extreme temperatures, development of resistance to a fungal pathogen and the ability to use a greater diversity of resources. Out of globally 5110 species of aphids described, about 250 species are major agricultural and horticultural pests. They damage the crops directly by sucking their nutrients, making galls and hampering photosynthesis and respiration by the growth of sooty moulds on the honeydew deposited thereon. Aphids also damage the crop indirectly by transmitting hundreds of plant viruses. Because of their economic importance, their population must be controlled to save the crops. In this contribution, several aspects of aphid systematic and biology such as endemism, host–plant association, diversity, morphology, feeding behaviour, life history, polymorphism and factors affecting it, migration, defence, aphid–ant association, endosymbiosis, economic importance and their population management have been described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A’Brook J (1968) The effect of plant spacing on the number of aphids trapped over groundnut crop. Ann Appl Biol 61:289–294

    Article  Google Scholar 

  • Agarwala BK (2007) Phenotypic plasticity in aphids (Homoptera: Insecta): components of variation and causative factors. Curr Sci 93:308–313

    Google Scholar 

  • Agarwala BK, Das A (1998) Population diversity in aphids: the influence of host-plants on morphology, biology and ecological performance of the mustard aphid Lipaphis erysimi (Kaltenbach). J Aphidol 12:21–32

    Google Scholar 

  • Agarwala BK, Ghosh AK (1985) Biogeographical considerations of India Aphididae (Homoptera). Insecta Matsumurana (New series) 31:81–96

    Google Scholar 

  • Akashe VB, Mehtre SP, Shewale MR (1997) Estimation of economic threshold level of safflower aphid (Uroleucon compositae Theobald) on Bhima. In: Proceedings of IVth international safflower conference, Bari (Italy), June 2–7, pp 317–319

    Google Scholar 

  • Akimoto S (2006) Inbreeding depression, increased phenotypic variance, and a trade-off between gonads and appendages in selfed progeny of the aphid Prociphilus oriens. Evolution 60:77–86

    PubMed  Google Scholar 

  • Albert R (1990) Experience with biological control measures in glasshouses in Southwest Germany. SROP/WPRS Bull 13:1–5

    Google Scholar 

  • Albittar L, Ismail M, Bragard C, Hance T (2016) Host-plants and aphid hosts influence the selection behaviour of three aphid parasitoids (Hymenoptera: Braconidae: Aphidiinae). Eur J Entomol 113:516–522

    Article  Google Scholar 

  • Almeida RP (2001) Effect of the population levels of Aphis gossypii on cotton agronomic traits and fibre quality. Proc Section Exp Appl Entomol Nev Amsterdam 12:97–100

    Google Scholar 

  • Anand S, Biradar VK, Neharkar PS, Gawande RW (2017) Determination of economic threshold level (ETL) of safflower aphid, Uroleucon compositae (Theobald). International journal of researches in bioscience, agriculture and technology. Special Issue 2(5):274–276

    Google Scholar 

  • Aoki S (1980) Life cycles of two Colophina aphids (Homoptera: Pernphigidae) producing soldiers. Kontyu 48:464–476

    Google Scholar 

  • Aoki S (1982) Pseudoscorpion-like second instar larvae of Pseudoregma shitosanensis (Homoptea: Aphidoidea) found on its primary host. Kontvu 50:445–453

    Google Scholar 

  • Armstrong JS, Porter MR, Peairs FB (1991) Alternate hosts of the Russian wheat aphid (Hornoptera: Aphididae) in northeastern Colorado. J Econ Entomol 84(6):1691–1694

    Article  Google Scholar 

  • Ashford DA, Smith WA, Douglas AE (2000) Living on a high sugar diet: the fate of sucrose ingested by a phloem-feeding insect, the pea aphid Acyrthosiphon pisum. J Insect Physiol 46(3):335–341

    Article  CAS  PubMed  Google Scholar 

  • Bahar MH, Islam MA, Mannan MA, Uddin MJ (2007) Effectiveness of some botanical extracts on bean aphids attacking yard-long beans. J Entomol 4:136–142

    Article  Google Scholar 

  • Bakhetia DRC, Brar KS (1988) Effect of water stress in Ethiopian mustard (Brassica carinata) and Indian mustard (B. juncea Subsp. juncea) on infestation by Lipaphis erysimi. Indian J Agric Sci 58:638–640

    Google Scholar 

  • Balog A, Mehrparvar M, Weisser WW (2013) Polyphagous predatory rove beetles (Coleoptera: Staphylinidae) induce winged morphs in the pea aphid Acyrthosiphon pisum (Hemiptera: Aphididae). Eur J Entomol 110:153–157

    Article  Google Scholar 

  • Barker AV, Pilbeam DJ (2016) Handbook of plant nutrition. CRC Press, Boca Raton, p 632

    Book  Google Scholar 

  • Basak S, Das SS, Pal S (2017) Economic threshold level of aphid on mustard crop at Pundibari (a part of Coochbehar district): it’s determination by application of probability and statistics. Int J Zool Stud 2(4):10–13

    Google Scholar 

  • Behura BK (1994) The mystery of aphid life-history. J Aphidol 8:1–18

    Google Scholar 

  • Behura BK (1996a) The structure and function of the cornicles of aphids (Homoptera: Aphididae). J Aphidol 10:1–12

    Google Scholar 

  • Behura BK (1996b) The colour of aphids (Homoptera: Aphididae): a mini-review and bibliography. J Aphidol 10:61–66

    Google Scholar 

  • Behura BK, Das MM (1976) Aphid and their role in agriculture. Proc Natl Acad Sci India 46:261–265

    Google Scholar 

  • Ben-Issa R, Gomez L, Gautier H (2017) Companion plants for aphid pest management. Insects 28(4):112

    Article  Google Scholar 

  • Bilodeau E, Guay J-F, Turgeon J, Cloutier C (2013) Survival to parasitoids in an insect hosting defensive symbionts: a multivariate approach to polymorphic traits affecting host use by its natural enemy. PLoS One 8:e60708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas S, Singh R (1998) Interaction between host-plant resistance and the biocontrol of a cereal aphid: a laboratory study. Biol Agric Hortic 16:25–36

    Article  Google Scholar 

  • Blackman RL (1975) Photoperiodic determination of the male and female sexual morphs of Myzus persicae. J Insect Physiol 21:435–453

    Article  Google Scholar 

  • Blackman RL, Eastop VF (2000) Aphids on the World’s crops: an identification and information guide, 2nd edn. Wiley, London, p 476

    Google Scholar 

  • Blackman RL, Eastop VF (2007) Aphids on the world’s herbaceous plants and shrubs. In: The aphids, vol 2. Wiley, Chichester, pp 1025–1456

    Google Scholar 

  • Boivin G, Hance T, Brodeur J (2012) Aphid parasitoids in biological control. Can J Plant Sci 92(1):1–12

    Article  Google Scholar 

  • Bouchard Y, Cloutier C (1984) Honeydew as a source of host searching kairomones for the aphid parasitoid Aphidius nigripes (Hym.: Aphidiidae). Can J Zool 62:1513–1520

    Article  Google Scholar 

  • Boulanger FX, Jandricic S, Bolckmans K, Wäckers FL, Pekas A (2019) Optimizing aphid biocontrol with the predator Aphidoletes aphidimyza, based on biology and ecology. Pest Manag Sci 75(6):1479–1493

    Article  CAS  PubMed  Google Scholar 

  • Braendle C, Miura T, Bickel R, Shingleton AW, Kambhampati S, Stern DL (2003) Developmental origin and evolution of bacteriocytes in the aphid-Buchnera symbiosis. PLoS Biol 1:70–76

    Article  CAS  Google Scholar 

  • Brewer MJ, Elliott NC (2004) Biological control of cereal aphids in North America and mediating effects of host-plant and habitat manipulations. Annu Rev Entomol 49:219–242

    Article  CAS  PubMed  Google Scholar 

  • Budenberg WJ, Powell W, Clark SJ (1992) The influence of aphids and honeydew on the leaving rate of searching aphid parasitoids from wheat plants. Entomol Exp Appl 63:259–264

    Article  Google Scholar 

  • Burgio G, Lanzoni A, Accinelli G, Dinelli G, Bonetti A, Marotti I, Ramilli F (2007) Evaluation of Bt-toxin uptake by the non-target herbivore, Myzus persicae (Hemiptera: Aphididae), feeding on transgenic oilseed rape. Bull Entomol Res 97:211–215

    Article  CAS  PubMed  Google Scholar 

  • Burton RL, Starks KJ (1977) Control of a primary parasite of the greenbug with a secondary parasite in greenhouse screening for plant resistance. J Econ Entomol 70:219–220

    Article  Google Scholar 

  • Buxton JH, Jacobsen R, Saynor M, Storer R, Wardlow L (1990) An integrated pest management programme for peppers, three years trials experience. SROP/WPRS Bull XIII/5:45–50

    Google Scholar 

  • Byers JA (2005) A cost of alarm pheromone production in cotton aphids, Aphis gossypii. Naturwissenschaften 92:69–72

    Article  CAS  PubMed  Google Scholar 

  • Capinera JL (2008) Encyclopedia of entomology. Springer Science & Business Media, Heidelberg, pp 193–194

    Book  Google Scholar 

  • Carter N, Powell W, Wright AF, Ashby JE (1989) Effectiveness of different insecticides applied at various growth stages to control aphids on winter wheat. Crop Prot 8:271–276

    Article  CAS  Google Scholar 

  • Chakrabarti S (1987) Biosystematics of gall aphids (Aphididae, Homoptera) of western Himalaya, India. Proc Indian Acad Sci (Animal Science) 96:561–572

    Article  Google Scholar 

  • Chakrabarti S (2007) Diversity and biosystematics of gall-inducing aphids (Hemiptera: Aphididae) and their galls in the Himalaya. Orient Insects 41:35–54

    Article  Google Scholar 

  • Chakrabarti S (2009) Diversity, distribution and endemism of aphids (Hemiptera) in Indian subregion of oriental realm. Redia 42:78–85

    Google Scholar 

  • Chakrabarti S, Chakrabarti S (2002) Tritrophic relationship: aphidophaga, aphid and its host plant - a study on Brachycaudus helichrysi (Kalt.) (Homoptera: Aphididae). J Aphidol 16:39–44

    Google Scholar 

  • Chamuene A, Ecole C, Freire M, Macuácua R, Maposse I, Santos L, Sidumo A, Sousa H (2007) Cropping systems and pest management strategies in the Morrumbala region of Mozambique: enhancing smallholders cash crop production and productivity. Afr Crop Sci Conf Proc 8:1045–1047

    Google Scholar 

  • Chang MG, Gurr GM, Tylianakis JM, Wratten SD (2017) Cultural control. In: van Emden HF, Harrington R (eds) Aphids as crop pests. Oxford University Press, Oxford, pp 494–514

    Chapter  Google Scholar 

  • Charles JJ, Paine TD (2016) Fitness effects of food resources on the polyphagous aphid parasitoid, Aphidius colemani Viereck (Hymenoptera: Braconidae: Aphidiinae). PLoS One 11(1):e0147551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen JQ, Rahbé Y, Delobel B, Sauvion N, Guillaud J, Febvay G (1997) Melon resistance to the aphid Aphis gossypii: behavioral analysis and chemical correlations with nitrogenous compounds. Entomol Exp Appl 85:33–44

    Article  CAS  Google Scholar 

  • Chen Y, Verheggen FJ, Sun D, Wang Z, Francis F, He K (2019) Differential wing polyphenism adaptation across life stages under extreme high temperatures in corn leaf aphid. Sci Rep 9:8744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choudhury D (1984) Aphid honeydew: a re-appraisal of the hypothesis of Owen and Wiegert. Oikos 45(2):287–290

    Article  Google Scholar 

  • Costello M, Altieri MA (1995) Abundance, growth rate and parasitization of Brevicoryne brassicae and Myzus persicae (Hom.: Aphididae) on broccoli growth in living mulshes. Agric Ecosyst Environ 52:187–196

    Article  Google Scholar 

  • de Barro PJ (1992) The role of temperature, photoperiod, crowding and plant quality on the production of alate viviparous females of the bird cherry-oat aphid, Rhopalosiphum padi. Entomol Exp Appl 65(3):205–214

    Article  Google Scholar 

  • de Faria MR, Wraight SP (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237–256

    Article  CAS  Google Scholar 

  • de Mendoza AH, Belliure B, Carbonell EA, Real V (2001) Economic thresholds for Aphis gossypii (Hemiptera: Aphididae) on Citrus clementina. J Econ Entomol 94(2):439–444

    Article  Google Scholar 

  • de Mendoza AH, Arouni R, Belliure B, Carbonell EA, Pérez-Panadés J (2006) Intervention threshfduolds for Aphis spiraecola (Hemiptera: Aphididae) on Citrus clementina. J Econ Entomol 99(4):1273–1279

    Article  Google Scholar 

  • Deguine JP, Goze E, Leclant F (2000) The consequences of late outbreaks of the aphid Aphis gossypii in cotton growing in Central Africa: towards a possible method for the prevention of cotton stickiness. Int J Pest Manage 46(1):85–89

    Article  Google Scholar 

  • Dent D (2000) Insect pest management, 2nd edn. CABI Publishing, Wallingford, p 410

    Book  Google Scholar 

  • Depa L, Węgierek P (2011) Aphid fauna (Sternorrhyncha, Aphidinea) in the nests of Lasius flavus (Fabricius, 1781) (Hymenoptera: Formicidae) of various plant communities. Aphids Other Hemipterous Insects 17:73–79

    Google Scholar 

  • Dewar AM, Denholm I (2017) Chemical control. In: van Emden HF, Harrington R (eds) Aphids as crop pests. Oxford University Press, Oxford, pp 398–425

    Chapter  Google Scholar 

  • Dhakal R, Ghimire R, Sapkota M, Thapa S, Bhatta AK, Regmi R (2019) Bioefficacy of different insecticides on cowpea aphid (Aphis craccivora Koch). Int J Entomol Res 7(1):1–7

    Article  Google Scholar 

  • Diaz BM, Fereres A (2005) Life table and population parameters of Nasonovia ribisnigri (Homoptera: Aphididae) at different constant temperatures. Environ Entomol 34:527–534

    Article  Google Scholar 

  • Dika J, Van Pelt JA (1992) Interaction between phyllosphere yeasts, aphid honeydew and fungicide effectiveness in wheat under field conditions. Plant Pathol 41(6):661–675

    Article  Google Scholar 

  • Dixon AFG (1977) Aphid ecology: life cycles, polymorphism and population regulation. Annu Rev Ecol Evol Syst 8:329–353

    Article  Google Scholar 

  • Dixon AFG (1985) Aphid ecology. Blackie, Glasgow, London, p 157

    Google Scholar 

  • Dixon AFG (1998) Aphid ecology: an optimization approach. Chapman and Hall, London, p 300

    Google Scholar 

  • Dixon AFG (2000) Insect predator-prey dynamics, ladybird beetles and biological control. Cambridge University Press, Cambridge, p 257

    Google Scholar 

  • Dixon AFG, Agarwala BK (1999) Ladybird-induced life-history changes in aphids. Philos Trans R Soc B 266:1549–1553

    Google Scholar 

  • Dixon AFG, Hemptinne JL (2001) Body size distribution in predatory ladybird beetles reflects that of their prey. Ecology 82:1847–1856

    Article  Google Scholar 

  • Dixon AFG, Horth S, Kindlmann P (1993) Migration in insects: cost and strategies. J Anim Ecol 62:182–190

    Article  Google Scholar 

  • Dogimont C, Bendahmane B, Chovelon V, Boissot N (2010) Host-plant resistance to aphids in cultivated crops: genetic and molecular bases, and interactions with aphid populationsLa résistance des plantes cultivées aux pucerons: bases génétiques et moléculaires et interaction avec les populations de pucerons. C R Biol 333(6–7):566–573

    Article  CAS  PubMed  Google Scholar 

  • Dotasara SK, Agrawal N, Singh N, Swami D (2017) Efficacy of some newer insecticides against mustard aphid Lipaphis erysimi (Kalt.) in cauliflower. J Entomol Zool Stud 5(2):654–656

    Google Scholar 

  • Douglas AE (1998) Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol 43:17–37

    Article  CAS  PubMed  Google Scholar 

  • Douglas AE, van Emden HF (2017) Nutrition and symbiosis. In: van Emden HF, Harrington R (eds) Aphids as crop pests, 2nd edn. CABI, Wallingford, pp 114–131

    Chapter  Google Scholar 

  • Du Y, Poppy GM, Powell W, Pickett JA, Wadhams LJ, Woodcock CM (1998) Identification of semiochemicals released during aphid feeding that attracts parasitoid Aphidius ervi. J Chem Ecol 24:1355–1368

    Article  CAS  Google Scholar 

  • Dubey S, Singh R (2008) Host-plant induced variations in life-table statistics of Aphis spiraecola patch (Homoptera: Aphididae). J Aphidol 23:53–60

    Google Scholar 

  • Dubey VK, Yadu YK (1998) Determination of economic threshold level of aphid (Lipaphis erysimi Kalt.) on mustard crop. J Soils Crops 8(2):123–126

    Google Scholar 

  • Eastop VF (1977) World wide importance of aphids as virus vectors. In: Harris F, Marmorosch K (eds) Aphids as virus vectors. Academic Press, London, pp 4–62

    Google Scholar 

  • El-Heneidy AH, Ibraheem MM, Megahed HE, Attia AA, Magdy AA, Abdel-Awal WM, Hassan MM (2003) Assessment of economic injury and threshold levels for key cereal aphid species in Egyptian wheat regions. Bull Entomol Soc Egypt Econ Ser 29:43–56

    Google Scholar 

  • El-Sayed, A.M., 2019. The pherobase: database of insect pheromones and semiochemicals. http://www.pherobase.com

  • Evans JW (1956) Palaeozoic and Mesozoic Hemiptera (Insecta). Aust J Zool 4(2):165–258

    Article  Google Scholar 

  • Farid A, Johnson JB, Shafii B, Quisenberry SS (1998a) Tritrophic studies of Russian wheat aphid, a parasitoid, and resistant and susceptible wheat over three parasitoid generations. Biol Control 12:1–6

    Article  Google Scholar 

  • Farid A, Quisenberry SS, Johnson JB, Shafii B (1998b) Impact of wheat resistance on Russian wheat aphid and a parasitoid. J Ecol Entomol 91:334–339

    Article  Google Scholar 

  • Farooq A, Tasawar Z (2008) Evaluation of integrated management of aphid pests, Brevicoryne brassicae and Lipaphis erysimi on canola crop in southern Punjab, Pakistan. Pak J Zool 40(1):13–17

    CAS  Google Scholar 

  • Favret C, Eades DC (2020). www.aphid.speciesfile.org retrieved on 31 March, 2020

  • Felton GW, Eichenseer H (1999) Herbivore saliva and its effects on plant defense against herbivores and pathogens. In: Agrawal AA, Tuzun S, Bent E (eds) Induced plant defenses against pathogens and herbivores. Biochemistry, ecology, and agriculture. APS Press, St Paul, pp 19–36

    Google Scholar 

  • Fereres A, Irwin ME, Kampmeier GE (2017) In: van Emden HF, Harrington R (eds) Aphids as crop pests, 2nd edn. CABI, Wallingford, pp 196–224

    Chapter  Google Scholar 

  • Flatt T, Weisser WW (2000) The effects of mutualistic ants on aphid life history traits. Ecology 81(12):3522–3529

    Article  Google Scholar 

  • Forsman A, Ahnesjö J, Caesar S, Karlsson M (2008) A model of ecological and evolutionary consequences of color polymorphism. Ecology 89:34–40

    Article  PubMed  Google Scholar 

  • Foster WA (2002) Aphid sex ratios. In: Hardy ICW (ed) Sex ratios: concepts and research methods. Cambridge University Press, Cambridge, pp 254–265

    Chapter  Google Scholar 

  • Fuentes-Contreras E, Niemeyer HM (1998) DIMBOA-glucoside, a wheat chemical defense, affects host acceptance and suitability of Sitobion avenae (Hemiptera: Aphididae) to the cereal aphid parasitoid Aphidius rhopalosiphi (Hymenoptera: Braconidae). J Chem Ecol 24:371–381

    Article  CAS  Google Scholar 

  • Fuentes-Contreras E, Niemeyer HM (2000) Effects of wheat resistance, the parasitoid Aphidius rhopalosiphi, and the entomopathogenic fungus Pandora neoaphidis, on population dynamics of the cereal aphid Sitobion avenae. Entomol Exp Appl 97:109–114

    Article  Google Scholar 

  • Gangasaran, Giri J (1986) Growth and yield of mustard as influenced by irrigation and plant population. Ann Agric Res 7(1):68–74

    Google Scholar 

  • Gehrer L, Vorburger C (2012) Parasitoids as vectors of facultative bacterial endosymbionts in aphids. Biol Lett 8:613–615

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghosh AK (1980) The Fauna of India and adjacent countries. Homoptera, Aphidoidea. I. Subfamily Chaitophorinae. Zoological Survey of India, Kolkata, p 124

    Google Scholar 

  • Ghosh LK, Rajendran TP (1988) First record of an aphid sexual (Homoptera: Aphididae) from Rajasthan, India. J Aphidol 2:51–58

    Google Scholar 

  • Ghosh MR, Raychaudhuri DN (1980) Some aspects of population ecology of aphids (Homoptera:Aphididae) in India. Bull Entomol 19:25–44

    Google Scholar 

  • Ghosh LK, Singh R (2000) Biodiversity of Indian insects with special reference to aphids (Homoptera: Aphididae). J Aphidol 14:113–123

    Google Scholar 

  • Ghosh A, Chakrabarti S, Mandal B, Krishna Kumar NK (2017) Aphids as vectors of the plant viruses in India. In: Mandal B, Rao G, Baranwal V, Jain R (eds) A century of plant virology in India. Springer, Singapore, pp 515–536

    Chapter  Google Scholar 

  • Gibson RV, Pickett JA (1983) Wild potato repels aphids by release of aphid alarm pheromone. Nature 302:608–609

    Article  CAS  Google Scholar 

  • Gilkson LA (1990) Biological control of aphids in glasshouse sweet peppers and tomatoes. SROP/WPRS Bull 13(5):64–70

    Google Scholar 

  • Girma H, Rao MR, Sithanantham S (2000) Insect pests and beneficial arthropod populations under different hedgerow intercropping systems in semiarid Kenya. Agrofor Syst 50(3):279–292

    Article  Google Scholar 

  • Godwal B (2010) Population dynamics and varietal preference of aphid, Aphis craccivora Koch on Indian bean, Lalab purpureus (Linn.) Sweet. Ph.D. thesis, S.K. Rajasthan Agricultural University, Bikaner, Campus – Jobner

    Google Scholar 

  • Goettel MS, Eilenberg J, Glare T (2005) Entomopathogenic fungi and their role in regulation of insect populations. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive molecular insect science, Control, vol 6. Elsevier, Amsterdam, pp 361–405

    Chapter  Google Scholar 

  • Goggin FL, Williamson VM, Ullman DE (2001) Variability in the response of Macrosiphum euphorbiae and Myzus persicae (Hemiptera: Aphididae) to the tomato resistance gene mi. Environ Entomol 30:101–106

    Article  Google Scholar 

  • Gols R, Wagenaar R, Bukovinszky T, van Dam NM, Dicke M, Bullock JM, Harvey JA (2008) Genetic variation in defense chemistry in wild cabbages affects herbivores and their endoparasitoids. Ecology 89:1616–1626

    Article  PubMed  Google Scholar 

  • González-Mas N, Cuenca-Medina M, Gutiérrez-Sánchez F, Quesada-Moraga E (2019) Bottom-up effects of endophytic Beauveria bassiana on multitrophic interactions between the cotton aphid, Aphis gossypii, and its natural enemies in melon. J Pest Sci 92:1271–1281

    Article  Google Scholar 

  • Grasswitz TR, Paine TD (1993) Influence of physiological state and experience on the responsiveness of Lysiphlebus testaceipes (Cresson) (Hymenoptera, Aphididae) to aphid honeydew and to host-plants. J Insect Behav 6:511–528

    Article  Google Scholar 

  • Guerrieri E, Digilio MC (2008) Aphid-plant interactions: a review. J Plant Interact 3(4):223–232

    Article  Google Scholar 

  • Guerrieri E, Pennacchio F, Tremblay E (1993) Flight behaviour of the aphid parasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae) in response to plant and host volatiles. Eur J Entomol 90:415–421

    Google Scholar 

  • Guo J, Hattab S, He K, Chen J, Francis F, Wang Z (2017) Nine facultative endosymbionts in aphids. Review J Asia-Pacific Entomol 20(3):794–801

    Article  Google Scholar 

  • Hågvar EB, Hofsvang T (1990) The aphid parasitoid Ephedrus cerasicola, a possible candidate for biological control in glasshouses. SROP/WPRS Bull XIII(5):87–90

    Google Scholar 

  • Hamilton WD (1967) Extraordinary sex ratios. Science 156:477–488

    Article  CAS  PubMed  Google Scholar 

  • Hance T, Delannoy O, Foucart G (1994) The screening of maize resistance to aphids as a contribution to integrated pest management. In: Struik PC, Vredenberg WJ, Renkema JA, Parlevliet JE (eds) Plant production on the threshold of a new century. Developments in plant and soil sciences, vol 61. Springer, Dordrecht, pp 407–409

    Chapter  Google Scholar 

  • Hance T, Kohandani-Tafresh F, Munaut F (2017) Biological control. In: van Emden HF, Harrington R (eds) Aphids as crop pests. Oxford University Press, Oxford, pp 448–493

    Chapter  Google Scholar 

  • Hansen LM (2000) Establishing control threshold for bird cherry-oat aphid (Rhopalosiphum padi L.) in spring barley (Hordeum vulgare L.) by aphid-days. Crop Prot 19(3):191–194

    Article  Google Scholar 

  • Hansen LM (2003) Kornbladlus (Sitobion avenae) i vinterhvede-et beslutnings-stöttesystem. Mark Theory 280:2–6

    Google Scholar 

  • Hardie J (2017) Life cycle and polyphenism. In: van Emden HF, Harrington R (eds) Aphids as crop pests, 2nd edn. CABI, Wallingford, pp 81–97

    Chapter  Google Scholar 

  • Harrewijn P (1978) The role of plant substances in polymorphism of the aphid Myzus persicae. Entomol Exp Appl 24:198–214

    Article  Google Scholar 

  • Harris KF, Maramorosch K (1977) Aphids as virus vectors. Academic Press, New York, p 576

    Google Scholar 

  • Hatano E, Kunert G, Weisser WW (2010) Aphid wing induction and ecological costs of alarm pheromone emission under field conditions. PLoS One 5:e11188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hazell S, Gwynn D, Ceccarelli S, Fellowes M (2005) Competition and dispersal in the pea aphid: clonal variation and correlations across traits. Ecol Entomol 30:293–298

    Article  Google Scholar 

  • Heie OE (1987) Palaeontology and phylogeny. In: Harrewijn P, Minks AK (eds) Aphids: their biology, natural enemies and control. In the series world crop pests, vol 2A. Elsevier, Amsterdam, pp 367–391

    Google Scholar 

  • Heie OE, Wegierek (2009) A classification of the Aphidomorpha (Hemiptera: Sternorrhyncha) under consideration of fossil taxa. Redia 92:69–77

    Google Scholar 

  • Helden AJ, Dixon AFG (1997) Inbreeding and egg hatching success in Sitobion avenae. Ecol Entomol 22(1):124–126

    Article  Google Scholar 

  • Helden AJ, Dixon AFG, Carter N (1994) Environmental factors and morphological discrimination between spring and summer migrants of the grain aphid, Sitobion avenae (Homoptera: Aphididae). Eur J Entomol 91:23–28

    Google Scholar 

  • Hemagirish MB, Goud KB, Mallapur CP (2001) Utilization of Chrysoperla carnea Stephens in the management of safflower aphid, Uroleucon compositae Theobald. Karnataka J Agric Sci 14(3):806–808

    Google Scholar 

  • Hill CB, Li Y, Hartman GL (2004) Resistance to the soybean aphid in soybean germplasm. Crop Sci 44:98–106

    Article  Google Scholar 

  • Hille Ris Lambers D (1966) Polymorphism in Aphididae. Annu Rev Entomol 11:47–78

    Article  Google Scholar 

  • Hofsvang T, Hågvar EB (1980) Use of mummies of Ephedrus cerasicola Starý to control Myzus persicae (Sulzer) in small glass houses. J Appl Entomol 90:220–226

    Google Scholar 

  • Hogervorst PAM, Wackers FL, Romeis J (2007) Effects of honeydew sugar composition on the longevity of Aphidius ervi. Entomol Exp Appl 122:223–232

    Article  CAS  Google Scholar 

  • Holz F, Wetzel T, Freier B (1994) Drei bis fünf Blattläuse pro Ähre im Winterweizen-eine neue Bekämp fungs schwelle? Gesunde Pflanzen 46(1):8–12

    Google Scholar 

  • Hooks CRR, Fereres A (2006) Protecting crops from non-persistently aphid-transmitted viruses: a review on the use of barrier plants as a management tool. Virus Res 120:1–16

    Article  CAS  PubMed  Google Scholar 

  • Hossain M, Ferdous J, Salim M (2008) Relative abundance and yield loss assessment of lentil aphid, Aphis craccivora Koch in relation to different sowing dates. J Agric Rural Dev 4(1):101–106

    Article  Google Scholar 

  • Howard LO (1929) Aphelinus mali and its travel. Ann Entomol Soc Am 22:341–368

    Article  Google Scholar 

  • Hu XS, Liu XF, Hu ZQ, Zhang YH, Zhao HY, Zhang GS (2011) The resistance of 10 wheat varieties to Sitobion avenae (Homoptera: Aphididae) in wheat seedlings phase in lab. Plant Prot 37:81–85

    Google Scholar 

  • Huang MH, Caillaud MC (2012) Inbreeding avoidance by recognition of close kin in the pea aphid, Acyrthosiphon pisum. J Insect Sci 12:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Hughes RD (1989) Biological control in the open field. In: Minks AK, Herrewijn P (eds) World crop pests, Aphids: their biology, natural enemies and control, vol C. Elsevier, Amsterdam, pp 167–198

    Google Scholar 

  • Hussey NW, Scopes N (1985) Biological Pest control: the glasshouse experience. Blanferd Press, Pooe, Dorset, p 240

    Google Scholar 

  • Isman MB, Miresmailli S, Machial C (2011) Commercial opportunities for pesticides based on plant essential oils in agriculture, industry and consumer products. Phytochem Rev 10:197–204

    Article  CAS  Google Scholar 

  • Ivens ABF, Kronauer DJC, Pen I, Weissing FJ, Boomsma JJ (2012) Ants farm subterranean aphids mostly in single clone groups - an example of prudent husbandry for carbohydrates and proteins? BMC Evol Biol 12:106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain PC, Yadava CPS (1986) Effect of dates of sowing on the incidence of insect pests of coriander. Indian J Agric Sci 56:56–59

    Google Scholar 

  • Jakhmola SS (1986) Bionomics and management of key pests of pulses and oilseeds. In: Proceedings of the Nat. Con. Key Pests Agric. Crops, C. S. A. U., T. Kanpur, p 7

    Google Scholar 

  • Jeon HY, Kang TJ, Kim HH, Yang CY, Kim DS (2008) Economic injury level of Myzus persicae (Homoptera: Aphididae) at Chinese cabbage. Korean J Appl Entomol 47(4):407–411

    Article  Google Scholar 

  • Johnson CG (1954) Aphid migration in relation to weather. Biol Rev 29:87–118

    Article  Google Scholar 

  • Johnson B (1966) Wing polymorphism in aphids III. The influence of the host-plant. Entomol Exp Appl 9:213–222

    Article  Google Scholar 

  • Johnson CG (1969) Migration and dispersal of insects by flight. Methuen & Co. Ltd., London, p 766

    Google Scholar 

  • Joshi S, Ballal CR (2013) Syrphid predators for biological control of aphids. J Biol Control 27(3):151–170

    Google Scholar 

  • Joshi S, Rabindra RJ, Rajendran TP (2010) Biological control of aphids. J Biol Control 24:185–202

    Google Scholar 

  • Kalasariya RL (2016) Management of aphid, Lipaphis erysimi in mustard with different spray schedules. Indian J Plant Prot 44(1):16–23

    Google Scholar 

  • Kaloshian I, Kinsey DE, Ullman DE, Williamson VM (1997) The impact of meul-mediated resistance in tomato on longevity, fecundity, and behavior of the potato aphid, Macrosiphum euphorbiae. Entomol Exp Appl 83:181–187

    Article  Google Scholar 

  • Kamath SP, Hugar PS (2001) Determination of economic threshold level of safflower aphid Uroleucon compositae (Theobald). Karnataka J Agric Sci 13(2):349–353

    Google Scholar 

  • Kanrar S, Venkateswari J, Kirti PB, Chopra VL (2002) Transgenic Indian mustard (Brassica napus) with resistance to the mustard aphid (Lipaphis erysimi Kalt.). Plant Cell Rep 20:976–981

    Article  CAS  Google Scholar 

  • Kashyap RK, Bhanot JP (1987) Effect of different biochemical factors on the development of Myzus persicae (Sulzer) on various potato cultures. In: Labeyrie V, Fabres G, Lachaise D (eds) Insects-plants proceedings of 6th international symposium of insect-plant relationship (PAU, 1986). Junk Publishers, Dordrecht, Netherlands, Dr. W, p 398

    Google Scholar 

  • Kawada K (1965) The development of winged forms in the cabbage aphid Brevicoryne brassicae Linnaeus II. The period of determination of wing development. Berichte de Ohara Inst 13(1):1–5

    Google Scholar 

  • Kennedy FJH, Rajamanickam K, Raveendran TS (1990) Effect of Intercroppong on insect pests of groundnut and their natural enemies. J Biol Control 4:63–64

    Google Scholar 

  • Kim JJ, Jeong G, Han JH, Lee S (2013) Biological control of aphid using fungal culture and culture filtrates of Beauveria bassiana. Mycobiology 41(4):221–224

    Article  PubMed  PubMed Central  Google Scholar 

  • Kislow CJ, Edwards LJ (1972) Repellent odours in aphids. Nature 235:108–109

    Article  Google Scholar 

  • Kogan M, Jepson P (2007) Perspectives in ecological theory and integrated pest management. Cambridge University Press, Cambridge, p 570

    Book  Google Scholar 

  • Komatsu T, Akimoto S (1995) Genetic differentiation as a result of adaptation to the phenologies of individual host trees in the galling aphid Kaltenbachiella japonica. Ecol Entomol 20:33–42

    Article  Google Scholar 

  • Kring JB (1972) Flight behaviour of aphids. Annu Rev Entomol 17:461–492

    Article  Google Scholar 

  • Krishna G, Kumar S, Singh BP, Kumari M (2008) Evaluation of different insecticides and intercropping against Myzus persicae (Sulzer) (Homoptera: Aphididae). J Aphidol 22(1&2):21–24

    Google Scholar 

  • Krishna G, Kumar S, Singh BP, Kumari M (2009) Impact of different insecticides and inter cropping against Lipaphis erysimi (Kalt.) (Homoptera: Aphididae) on cauliflower. J Aphidol 23(1&2):77–80

    Google Scholar 

  • Kulkarni NS (2016) Loss estimation and economic threshold level for aphids (Acyrthosiphon pisum Harris) in lucerne. Range Manage Agroforestry 37(1):113–115

    Google Scholar 

  • Kumawat KC, Khinchi SK (2016) Estimation of economic decision levels of aphid, Aphis craccivora Koch on cowpea, Vigna unguiculata (Linn.) Walp. Resonance 5(3):6–9

    Google Scholar 

  • Kunert G, Weisser WW (2005) The importance of antennae for pea aphid wing induction in the presence of natural enemies. Bull Entomol Res 95:125–131

    Article  CAS  PubMed  Google Scholar 

  • Kunert G, Otto S, Rose USR, Gershenzon J, Weisser WW (2005) Alarm pheromone mediates production of winged dispersal morphs in aphids. Ecol Lett 8:596–603

    Article  Google Scholar 

  • Lal SS, Yadav CP, Dias CAR (1989) Effect of planting density and chickpea cultivars on the infestation of black aphid, Aphis craccivora Koch. Madras Agric J 76:461–462

    Google Scholar 

  • Lamb RJ, Pointing PJ (1972) Sexual morph determination in the aphid, Acyrthosiphon pisum. J Insect Physiol 18:2029–2042

    Article  Google Scholar 

  • Larsson H (1986) Damage threshold for aphids in barley and winter wheat, weed and plant protection conference 1986, Växtskyddsrapporter, Jordbruk 39. Swedish University of Agricultural Sciences, pp 201–210

    Google Scholar 

  • Larsson H (1991) Economic importance of cereal aphids of different cost levels. In: Proceedings of the 4th Swedish crop protection conference, Uppala, 30–31 January 1991

    Google Scholar 

  • Larsson H (2005) A crop loss model and economic thresholds for the gain aphid, Sitobion avenae (F.), in winter wheat in southern Sweden. Crop Prot 24:397–405

    Article  Google Scholar 

  • Lees AD (1966) The control of polymorphism in aphids. Adv Insect Physiol 3:207–277

    Article  CAS  Google Scholar 

  • Lees AD (1967) The production of the apterous and alate forms in the aphid Megoura viciae Buckton, with special reference to the role of crowding. J Insect Physiol 13:289–318

    Article  Google Scholar 

  • Levie A, Legrand MA, Dogot P, Pels C, Baret PV, Hance T (2005) Mass releases of Aphidius rhopalosiphi (Hymenoptera: Aphidiinae), and strip management to control of wheat aphids. Agric Ecosyst Environ 105:17–21

    Article  Google Scholar 

  • Li Y, Hill C, Carlson S, Diers B, Hartman G (2007) Soybean aphid resistance genes in the soybean cultivars Dowling and Jackson map to linkage group M. Mol Breed 19:25–34

    Article  CAS  Google Scholar 

  • Li-Jiping JS, Guonfang H, AnMing W, Jp L, Sl J, Gf H, Ann W (1995) A preliminary study on population dynamics and economic threshold of wheat aphids in Gangy County, Gansu province. Plant Prot 21(2):2–4

    Google Scholar 

  • Linda L, Walling LL (2008) Avoiding effective defenses: strategies employed by phloem-feeding insects. Plant Physiol 146(3):859–866

    Article  CAS  Google Scholar 

  • Liu XL, Yang XF, Wang CY, Wang YJ, Zhang H, Ji WQ (2012) Molecular mapping of resistance gene to English grain aphid (Sitobion avenae F.) in Triticum durum wheat line C273. Theor Appl Genet 124:287–293

    Article  CAS  PubMed  Google Scholar 

  • Loginova, E., Atanassov, N., Georgiev, G., 1987. Biological control of pests and diseases in glasshouses in Bulgaria today and in the future. SROP/WPRS Bulletin X/2, 101–105

    Google Scholar 

  • López Pérez M, Fernández Argudín M, Powell W (2007) Foraging behaviour of the parasitoid Lysiphlebus testaceipes (Hymenoptera: Braconidae) in response to plant volatiles, with reference to biocontrol of aphids in peri-urban vegetable production systems. Biocontrol Sci Tech 17:677–686

    Article  Google Scholar 

  • Losey JE, Harmon J, Ballantyne F, Brown C (1997) A polymorphism maintained by opposite patterns of parasitism and predation. Nature 388:269–272

    Article  CAS  Google Scholar 

  • Łukasik P, van Asch M, Guo H, Ferrari J, Godfray HCJ (2013) Unrelated facultative endosymbionts protect aphids against a fungal pathogen. Ecol Lett 16:214–218

    Article  PubMed  Google Scholar 

  • Lv L, Chen R (1993) Study on the production of alatae in soybean aphid Aphis glycines. Acta Entomol Sin 36:143–149

    Google Scholar 

  • Mackauer M (1971) Acyrthosiphon pisum (Harris), pea aphid (Homoptera: Aphididae). In: Biological control programmers against insects and weeds in Canada (1959–1968), 4. Technical Communication, pp 3–10

    Google Scholar 

  • Mahr S (2018) Aphids. https://wimastergardener.org/article/aphids, published on October 8

  • Maina UM, Galadima IB, Gambo FM, Zakaria D (2018) A review on the use of entomopathogenic fungi in the management of insect pests of field crops. J Entomol Zool Stud 6(1):27–32

    Google Scholar 

  • Manjula TR, Kannan GS, Sivasubramanian P (2018) Field efficacy of Pseudomonas fluorescens against the cotton aphid, Aphis gossypii glover (Hemiptera: Aphididae) in Bt and non Bt cotton. Int J Curr Microbiol App Sci 6:11–24

    Google Scholar 

  • Marchi-Werle L, Baldin ELL, Fischer HD, Heng-Moss TM, Hunt TE (2017) Economic injury levels for Aphis glycines Matsumura (Hemiptera: Aphididae) on the soybean aphid tolerant KS4202 soybean. J Econ Entomol 110(5):2100–2108

    Article  PubMed  Google Scholar 

  • Markkula M, Tittanen K (1985) Biology of the midge Aphidoletes and its potential for biological control. In: Hussey NW, Scopes NEA (eds) Biological Pest control - the glasshouse experience. Blandford, Poole, Dorset, pp 74–81

    Google Scholar 

  • Martin B, Rahbe Y, Fereres A (2003) Blockage of stylet tips as the mechanism of resistance to virus transmission by Aphis gossypii in melon lines bearing the vat gene. Ann Appl Biol 142:245–250

    Article  CAS  Google Scholar 

  • Martínez AFR, Costamagna AC (2018) Effects of crowding and host-plant quality on morph determination in the soybean aphid, Aphis glycines. Entomol Exp Appl 166:53–62

    Article  CAS  Google Scholar 

  • Matharu KS, Tanwa PS (2019) Efficacy of different insecticides and biopesticide against wheat aphid. J Entomol Zool Stud 7(3):521–524

    Google Scholar 

  • Matsuka M, Mittler TE (1978) Enhancement of alata production by an aphid, Myzus persicae, in response to increase in daylength. Bull Fac Agric Tamagawa Univ Tokyo 18:1–7

    Google Scholar 

  • McCarville MT, Kanobe C, Macintosh GC, O’neal M (2011) What is the economic threshold of soybean aphids (Hemiptera: Aphididae) in enemy-free space? J Econ Entomol 104(3):845–852

    Article  CAS  PubMed  Google Scholar 

  • Medda PK, Sarkar S, Chakrabarti S (1997) Willow infesting aphids (Homoptera: Aphididae) of India and adjacent countries. J Aphidol 11(1):83–97

    Google Scholar 

  • Mehrparvar M, Zytynska SE, Weisser WW (2013) Multiple cues for winged morph production in an aphid metacommunity. PLoS One 8:e58323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meier MS, Hilbeck A (2001) Influence of transgenic Bacillus thuringiensis corn-fed prey on prey preference of immature Chrysoperla carnea (Neuroptera: Chrysopidae). Basic Appl Ecol 2:35–44

    Article  CAS  Google Scholar 

  • Meyling NV, Eilenberg J (2007) Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: potential for conservation biological control. Biol Control 43:145–155

    Article  Google Scholar 

  • Miles PW (1999) Aphid saliva. Biol Rev 74(1):41–85

    Article  Google Scholar 

  • Minks AK, Harrewijn P (1987) Aphids: their biology, natural enemies and control, vol A. Elsevier Science Publisher B.V., Amsterdam, p 450

    Google Scholar 

  • Mittler TE (1973) Aphid polymorphism as affected by diet. In: Lowe AD (ed) Perspectives in aphid biology, Bull. No. 2. Entromological Society, pp 65–75

    Google Scholar 

  • Mittler TE, Sutherland ORW (1969) Dietary influences on aphid polymorphism. Entomol Exp Appl 12:703–713

    Article  Google Scholar 

  • Mittnacht A (1986) Blattlausbekämpfung in Winterweizen nach Schaden-schwellen. Gesunde Pflanzen 38(4):186–189

    Google Scholar 

  • Miyazaki M (1987) Forms and morphs of aphids. In: Minks AK, Harrewijn P (eds) Aphids: their biology, natural enemies and control, vol 2A. Elsevier, Amsterdam, pp 27–50

    Google Scholar 

  • Mondor EB, Roitberg BD (2000) Has the attraction of predatory coccinellids to cornicle droplets constrained aphid alarm signaling behavior? J Insect Behav 13:321–329

    Article  Google Scholar 

  • Mondor EB, Rosenheim JA, Addicott JF (2005) Predator-induced transgenerational phenotypic plasticity in the cotton aphid. Oecologia 142:104–108

    Article  PubMed  Google Scholar 

  • Montllor CB, Maxmen A, Purcell AH (2002) Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol Entomol 27:189–195

    Article  Google Scholar 

  • Morales I, Diaz BM, de Mendoza AH, Nebreda M, Fereres A (2013) The development of an economic threshold for Nasonovia ribisnigri (Hemiptera: Aphididae) on lettuce in Central Spain. J Econ Entomol 106(2):891–898

    Article  CAS  PubMed  Google Scholar 

  • Moran NA (1992) The evolution of aphid life-cycles. Annu Rev Entomol 37:321–348

    Article  Google Scholar 

  • Moran NA, Jarvik T (2010) Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science 328(5978):624–627

    Article  CAS  PubMed  Google Scholar 

  • Moran NA, Munson MA, Baumann P, Ishikawa H (1993) A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proc R Soc Lond B 253:167–171

    Article  Google Scholar 

  • Müller FP (1962) Biotypen und Unterarten der Erbsenlaus’ Acyrthosiphon pisum (Harris). Z Pflanzenkrankh Pflanzenschutz 69:129–136

    Google Scholar 

  • Müller CB, Williams IS, Hardie J (2001) The role of nutrition, crowding and interspecific interactions in the development of winged aphids. Ecol Entomol 26:330–340

    Article  Google Scholar 

  • Mumford JD, Baliddawa CW (1983) Factors governing insect occurrence in various cropping systems. Insect Sci Appl 4:59–64

    Google Scholar 

  • Naga KC, Kumawat KC (2015) Estimation of economic decision levels of aphid, Acyrthosiphon pisum (Harris) on Fenugreek, Trigonella foenum-graecum Linn. Ann Plant Prot Sci 23(1):37–42

    Google Scholar 

  • Nebreda M (2005) Dinámica poblacional de insectos homópteros en cultivos de lechuga y bróculi, identificación de parasitoides asociados y evaluación de alternativas fisicas de control. Thesis. Universidad Complutense de Madrid, Madrid, Spain

    Google Scholar 

  • Nevo E, Coll M (2001) Effect of nitrogen fertilization on Aphis gossypii (Homoptera: Aphididae): variation in size, color, and reproduction. J Econ Entomol 94(1):27–32

    Article  CAS  PubMed  Google Scholar 

  • Ng JCK, Perry KL (2004) Transmission of plant viruses by aphid vectors. Mol Plant Pathol 5(5):505–511

    Article  PubMed  Google Scholar 

  • Noda I (1958) The emergence of winged viviparous female in aphid. III. Critical period of determination of wing development in Rhopalosiphum prunifoliae. Jpn J Entomol 2:53–58

    Google Scholar 

  • Norris RF, Caswell-Chen EP, Kogan M (2003) Concepts in integrated Pest management. Prentice Hall, Upper Saddle River, p 586

    Google Scholar 

  • Obrycki JJ, Kring TJ (1998) Predaceous coccinellidae in biological control. Annu Rev Entomol 43:295–321

    Article  CAS  PubMed  Google Scholar 

  • Obrycki JJ, Tauber MJ (1984) Natural enemy activity on glandular pubescent potato plants in the green house: an unreliable predictor of effects in the field. Environ Entomol 13:679–683

    Article  Google Scholar 

  • Ogenga-Latigo MW, Baliddawa CW, Ampofo JK (1993) Factors influencing the incidence of the black bean aphid Aphis fabae Scop., on common beans intercropped with maize. Afr Crop Sci J 1(1):49–58

    Google Scholar 

  • Oliver KM, Russell JA, Moran NA, Hunter MS (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci USA 100:1803–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver KM, Degnan PH, Burke GR, Moran NA (2010) Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu Rev Entomol 55:247–266

    Article  CAS  PubMed  Google Scholar 

  • Omkar, Pervez A (2002) Ecology of aphidophagous ladybird beetle, Coccinella septempunctata Linn. (Coleoptera: Coccinellidae). J Aphidol 16:175–201

    Google Scholar 

  • Omoigui L, Ekeuro G, Kamara A, Bello L, Timko M, Ogunwolu G (2017) New sources of aphids [Aphis craccivora (Koch)] resistance in cowpea germplasm using phenotypic and molecular marker approaches. Euphytica 213(8):178–192

    Article  CAS  Google Scholar 

  • Owen DF, Wiegert RG (1976) Do consumers maximize plant fitness? Oikos 27:488–492

    Article  Google Scholar 

  • Pal M, Singh R, Srivastava PN (2008) Thermal influence on the life-table statistics of the cabbage aphid, Brevicoryne brassicae (Linn.) (Homoptera: Aphididae). J Aphidol 22:73–80

    Google Scholar 

  • Paliwal D (2017) Identification and characterisation of new aphid killing bacteria for use as biological pest control agents. PhD thesis, University of Reading

    Google Scholar 

  • Pappas ML, Broufas GD, Koveos DS (2011) Chrysopid predators and their role in biological control. J Entomol 8:301–326

    Article  Google Scholar 

  • Parr WJ, Scopes NEA (1970) Problems associated with biological control of glasshouse pests. NAAS Quarterly Rev 89:113–121

    Google Scholar 

  • Parrella MP (2008) Biological control in protected culture: will it continue to expand? Phytoparasitica 36:3–6

    Article  Google Scholar 

  • Parry HR (2013) Cereal aphid movement: general principles and simulation modeling. Mov Ecol 1(1):14

    Article  PubMed  PubMed Central  Google Scholar 

  • Partridge M, Borden JH (1997) Evaluation of neem seed extract for control of the spruce aphid, Elatobium abietinum (Walker) (Homoptera: Aphidae). Can Entomol 129:899–906

    Article  Google Scholar 

  • Pawar AD (2002) Integrated Pest management package for Citrus, IPM Package No. 28. Directorate of Plant Protection, Quarantine & Storage, Government of India, New Delhi, pp 1–26

    Google Scholar 

  • Pedigo LP, Hutchins SH, Higley LG (1986) Economic injury levels in theory and practice. Ann Teview Entomol 31:341–368

    Article  Google Scholar 

  • Pettersson J, Tjallingii WF, Hardie J (2017) In: van Emden HF, Harrington R (eds) Aphids as crop pests, 2nd edn. CABI, Wallingford, pp 173–195

    Chapter  Google Scholar 

  • Pickett JA, Griffiths DC (1980) Composition of aphid alarm pheromones. J Chem Ecol 6:349–360

    Article  CAS  Google Scholar 

  • Pickett JA, Wadhams LJ, Woodcock CM, Hardie J (1992) The chemical ecology of aphids. Annu Rev Entomol 37:67–90

    Article  CAS  Google Scholar 

  • Pickett JA, Bruce TJA, Glinwood RT (2017) Chemical ecology. In: van Emden HF, Harrington R (eds) Aphids as crop pests, 2nd edn. CABI, Wallingford, pp 148–172

    Chapter  Google Scholar 

  • Polgar L (1987) Induced diapause for long term storage of Aphidius matricariae. SROP/WPRS Bull 10:152–154

    Google Scholar 

  • Popov NA, Belousov YV, Zabudskaya IA, Khudyakova OA, Shevtscenko VB, Shijko ES (1987) Biological control of glasshouse pests in the South of the USSR. SROP/WPRS Bull X/2:155–157

    Google Scholar 

  • Potts MJ, Gunadi N (1991) The influence of intercropping with Allium on some insect populations in potato (Solanum tuberosum). Ann Appl Biol 119:207–213

    Article  Google Scholar 

  • Pramanik P, Bandyopadhyay KK, Bhaduri D, Bhattacharya D, Aggarwal P (2015) Effect of mulch on soil thermal regimes - a review. Int J Agric Environ Biotechnol 8(3):645–658

    Article  Google Scholar 

  • Prasad D, Singh KM, Katiyar RN, Singh RN (1987) Impact of intercropping on the plant growth, pest incidence and crop yield of pea, Pisum sativum Linn. Ind J Entomol 49:153–172

    Google Scholar 

  • Price PW (1986) Ecological aspects of host-plant resistance and biological control: interactions among three trophic levels. In: Boethal DJ, Eikenbary RD (eds) Interactions of plant resistance and parasitoids and predators of insects. Wiley, New York, pp 11–30

    Google Scholar 

  • Price PW, Bouton CE, Gross P, McPheron BA, Thompson JN, Weise AE (1980) Interaction among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annu Rev Ecol Evol Syst 11:41–65

    Article  Google Scholar 

  • Purandare SR, Bickel RD, Jaquiery J, Rispe C, Brisson JA (2014) Accelerated evolution of morph-biased genes in pea aphids. Mol Biol Evol 31:2073–2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puritch GS (1981) Pesticidal soaps and adjuvants-what are they and how do they work? In: Proceedings of the 23rd annual lower mainland horticultural improvement association growers short course, Abbotsford, B.C., February 11–13

    Google Scholar 

  • Rabasse JM, Lafont JP, Delpuech I, Silvie P (1983) Progress in aphid control in protected crops. SROP/WPRS Bull VI/3:151–162

    Google Scholar 

  • Ragsdale DW, Mccornack BP, Venette RC, Potter BD, Macrae IV, Hodgson EW, O’neal ME, Johnson KD, O’neil RJ, Difonzo CD, Hunt TE, Glogoza PA, Cullen EM (2007) Economic threshold for soybean aphid (Hemiptera: Aphididae). J Econ Entomol 100(4):1258–1267

    Article  CAS  PubMed  Google Scholar 

  • Ramakers PLJ (1989) Biological control in green house. In: Mink AK, Harriwijn P (eds) World crop Pest: aphids their biology, natural enemies and control, vol C. Elsevier, Amsterdam, pp 199–208

    Google Scholar 

  • Raman KV (1985) Transmission of potato viruses by aphids, Technical Information Bulletin 2. International Potato Center (CIP), Lima-Peru, p 23

    Google Scholar 

  • Raps A, Kehr J, Gugerli P, Moar WJ, Bigler F, Hilbeck A (2001) Detection of Cry1Ab in phloem sap of Bacillus thuringiensis corn and in the non-target herbivores Rhopalosiphum padi (Homoptera: Aphididae) and Spodoptera littoralis (Lepidoptera: Noctuidae). Mol Ecol 10:525–533

    Article  CAS  PubMed  Google Scholar 

  • Rashid MH, Khan A, Hossain MT, Chung YR (2017) Induction of systemic resistance against aphids by endophytic Bacillus velezensis YC7010 via expressing Phytoalexin Deficient4 in Arabidopsis. Front Plant Sci 8:211

    Article  PubMed  PubMed Central  Google Scholar 

  • Regar R, Kumawat KC, Khinch SK (2016) Estimation of economic decision levels of aphid, Aphis craccivora Koch on cowpea, Vigna unguiculata (Linn.) Walp. (grown for vegetable). Asian Resonance 5(3):6–9

    Google Scholar 

  • Rehner SA (2005) Phylogenetics of the insect pathogenic genus Beauveria. In: Vega FE, Blackwell M (eds) Insect-fungal associations: ecology and evolution. Oxford University Press, Oxford, pp 3–27

    Google Scholar 

  • Remaudiere G, Remaudiere M (1997) Catalogue des Aphididae du monde/catalogue of the world’s Aphididae. Homoptera Aphidoidea. INRA Editions, Paris, p 474

    Google Scholar 

  • Rios Martinez AF, Costamagna AC (2017) Dispersal to predator-free space counterweighs fecundity costs in alate aphid morphs. Ecol Entomol 42:645–656

    Article  Google Scholar 

  • Robert P, Riba G (1989) Toxic and repulsive effects of spray, ‘per os’ and systemic applications of destruxin E to aphids. Mycopathologia 108:179–183

    Article  CAS  Google Scholar 

  • Robert L, Burton D, Simon K, Starks J, Robert M (1985) Seasonal damage by green bugs (Homoptera: Aphididae) to a resistant and a susceptible variety of wheat. J Econ Entomol 78:395–401

    Article  Google Scholar 

  • Rocca M, Messelink GJ (2017) Combining lacewings and parasitoids for biological control of foxglove aphids in sweet pepper. J Appl Entomol 141:402–410

    Article  CAS  Google Scholar 

  • Rodríguez M, Marín A, Torres M, Béjar V, Campos M, Sampedro I (2018) Aphicidal activity of surfactants produced by Bacillus atrophaeus L193. Front Microbiol 9:3114

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Saona C, Blaauw BR, Isaacs R (2012) Manipulation of natural enemies in agroecosystems: habitat and semiochemicals for sustainable insect pest control. In: Larramendy M, Soloneski S (eds) Integrated Pest management and Pest control – current and future tactics. Intech, Rijeka, Croatia, pp 89–126

    Google Scholar 

  • Sabbour MM (2019) Effect of destruxin on the population reduction of green peach aphid Myzus persicae (Hemiptera: Aphididae) and the predator Coccinella undecimpunctata (Coleoptera: Coccinellidae) in tomato fields. Bull Nat Res Centre 43:132

    Article  Google Scholar 

  • Sachan GC (1990) Problem of insect pests in brassicas and research work at Pantnagar. In: Omran A (ed) Proceedings of the IDRC three meetings held at Pantnagar and Hyderabad, India, 4–17 January, 1989, pp 56–65

    Google Scholar 

  • Sachan GC (1997) Cultural control of aphids: a review and bibliography. J Aphidol 11(1):25–35

    Google Scholar 

  • Samota RP, Kumawat KC, Samota RG (2014) Economic decision for levels of aphid, Myzus persicae (Sulz.) on cumin, Cuminum cyminum Linn. Ann Biol 30(4):738–742

    Google Scholar 

  • Samuel A, Ofuya T, James PO (2006) Effects of watering regimes on aphid infestation and performance of selected varieties of cowpea (Vigna unguiculata L. Walp) in a humid rainforest zone of Nigeria. Crop Prot 25(1):73–78

    Article  Google Scholar 

  • Sandström JP, Russell JA, White JP, Moran NA (2001) Independent origins and horizontal transfer of bacterial symbionts of aphids. Mol Ecol 10:217–228

    Article  PubMed  Google Scholar 

  • Sasso R, Iodice L, Digilio MC, Carretta A, Ariati L, Guerrieri E (2007) Host locating response by the aphid parasitoid Aphidius ervi to tomato plant volatiles. J Plant Interact 2:175–183

    Article  CAS  Google Scholar 

  • Saunakiya AK, Tiwari N (2014) Economic injury and threshold level of Lipaphis erysimi (Kalt.). Int J Life Sci Res 2(4):178–184

    Google Scholar 

  • Scarborough CL, Ferrari J, Godfray HCJ (2005) Aphid protected from pathogen by endosymbiont. Science 310:1781

    Article  CAS  PubMed  Google Scholar 

  • Schoonhoven LM, van Loon JJA, Dicke M (2007) Insect-plant biology. Oxford University Press, Oxford, p 448

    Google Scholar 

  • Schuler TH, Denholm I, Jouanin L, Clark SJ, Clark AJ, Poppy GM (2001) Population-scale laboratory studies of the effect of transgenic plants on non-target insects. Mol Ecol 10:1845–1853

    Article  CAS  PubMed  Google Scholar 

  • Seckbach J, Dubinsky Z (2011) All flesh is grass: plant-animal interrelationships. Springer Science & Business Media, Dordrecht, p 531

    Google Scholar 

  • Seiter N (2018) Integrated pest management: what are economic thresholds, and how are they developed? Farmdoc Daily 8:197

    Google Scholar 

  • Sekhon BS, Bakhetia DRC (1991) Economic threshold of mustard aphid, Lipaphis erysimi Kaltenbach. Proc 8th Int Rapeseed Congr 2:502–505

    Google Scholar 

  • Sekhon SS, Sajjan SS, Kanta U (1980) Chemical control of mustard aphid, Lipaphis erysimi on seed crop of radish. Indian J Plant Prot 8(2):151–153

    CAS  Google Scholar 

  • Sentis A, Bertram R, Dardenne N, Ramon-Portugal F, Louit I, Le Trionnaire G, Simon JC, Magro A, Pujol B, Hemptinne JL, Danchin E (2019) Different phenotypic plastic responses to predators observed among aphid lineages specialized on different host-plants. Sci Rep 9:9017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shah FM, Razaq M, Ali A, Han P, Chen J (2017) Comparative role of neem seed extract, moringa leaf extract and imidacloprid in the management of wheat aphids in relation to yield losses in Pakistan. PLoS One 12(9):e0184639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shan LT, Feng MG (2010) Evaluation of the biocontrol potential of various Metarhizium isolates against green peach aphid Myzus persicae (Homoptera: Aphididae). Pest Manag Sci 66:669–675

    Article  CAS  PubMed  Google Scholar 

  • Shannag HS, Capinera JL, Freihat NM (2014) Efficacy of different neem-based biopesticides against green peach aphid, Myzus persicae (Hemiptera: Aphididae). Int J Agric Policy Res 2(2):61–68

    Google Scholar 

  • Shaoyou L, Stoltz RL, Xinzhi N (1986) Damage to wheat by Macrosiphum avenae in Northwest China. J Econ Entomol 79:1688–1691

    Article  Google Scholar 

  • Shaposhnikov GC (1979) Late Jurassic and early cretaceous aphids. Paleontol J 1979(4):66–78

    Google Scholar 

  • Sharma KK, Dutta SK, Borah BK (2000) Economic injury level of Aphis craccivora Koch in green gram var. AAU-34. Crop Res 23:463–468

    Google Scholar 

  • Sharma HC, Bhagwat VR, Daware DG, Pawar DB, Munghate RS, Sharma SP, Kumar AA, Reddy BVS, Prabhakar KV, Ambekar SK, Gadakh SR (2014) Identification of sorghum genotypes with resistance to the sugarcane aphid Melanaphis sacchari under natural and artificial infestation. Plant Breed 133(1):36–44

    Article  CAS  Google Scholar 

  • Shaw MJP (1970) Effects of population density on alienicolae of Aphis fabae Scop. Ann Appl Biol 65:191–196

    Article  Google Scholar 

  • Shlyakhovoi NA, Bobonich VM (1975) Natural regulators of the numbers of pests. Zashchita Rastenii 5:31

    Google Scholar 

  • Shukla A, Mishra VP (2010) Efficacy of insecticides against Lipaphis erysimi (Kalt.) and Myzus persicae (Sulz.) (Homoptera: Aphididae) on taramira (Eruca sativa Linn.). J Aphidol 24(1&2):33–36

    Google Scholar 

  • Sidhu HS, Kaur P (1977) Influence of nitrogen application to the host-plant on the fecundity of mustard aphid, Lipaphis erysimi (Kalt.). J Res Punjab Agric Univ 14:445–448

    CAS  Google Scholar 

  • Sigsgaard L, Enkegaard A, Eilenberg J, Kristensen K, Jensen NL (2013) Biological control of tortricids and aphids in strawberries, Pesticide research no. 150. The Danish Environmental Protection Agency, Denmark

    Google Scholar 

  • Silva RJ, Alencar JR, Silva KP, Cividanes FJ, Duarte RT, Agostini LT, Polanczyk RA (2014) Interactions between the entomopathogenic fungi Beauveria bassiana (Ascomycota: Hypocreales) and the aphid parasitoid Diaeretiella rapae (Hymenoptera: Braconidae) on Myzus persicae (Hemiptera: Aphididae). J Econ Entomol 107(3):933–938

    Article  CAS  PubMed  Google Scholar 

  • Singh V (1982) Effect of sowing time on incidence of corn leaf aphid, Rhopalosiphum maidis (Fitch.) on barley. Ind J Entomol 44:89–92

    Google Scholar 

  • Singh R (2001) Biological control of the aphids by utilising parasitoids. In: Upadhyay RK, Mukerji KG, Chamola BP (eds) Biocontrol potential and its exploitation in sustainable agriculture, vol 2. Kulwer Academic/Plenum Publishers, USA, pp 57–73

    Chapter  Google Scholar 

  • Singh R (2003) Tritrophic interactions with reference to biological control of insect pests. Rev Biol Memoirs 29(2):55–70

    CAS  Google Scholar 

  • Singh R (2015) Elements of entomology, 2nd edn. Rastogi Publications, Meerut, India, p 564

    Google Scholar 

  • Singh R, Agarwala BK (1992) Biology, ecology and control efficiency of the aphid parasitoid Trioxys indicus: a review and bibliography. Biol Agric Hortic 8:271–298

    Article  Google Scholar 

  • Singh R, Ghosh S (2002) The glimpses of Indian aphids (Insecta: Hemiptera, Aphididae). Proc Natl Acad Sci Allahabad 72B:215–234

    Google Scholar 

  • Singh R, Ghosh S (2012) Sexuales of aphids (Insecta: Homoptera: Aphididae) in India. Lap Lambert Academic Publishing, Saarbrücken, p 414

    Google Scholar 

  • Singh SV, Malik YP (1998) Population dynamics and economic threshold of Lipaphis erysimi (Kaltenbach) on mustard. Ind J Entomol 60:43–49

    Google Scholar 

  • Singh R, Rao SN (1995) Biological control of Aphis gossypii glover (Homoptera: Aphididae) on cucurbits by Trioxys indicus Subba Rao and Sharma (Hymenoptera: Aphidiidae). Biol Agric Hortic 12:227–236

    Article  Google Scholar 

  • Singh G, Singh G (1985) Effect of date of sowing on the appearance and abundance of Myzus persicae (Sulzer) and yield of taramira crop. Indian J Agric Sci 55:237–289

    Google Scholar 

  • Singh K, Singh R (2015) Effect of temperature on the life history traits of Aphis gossypii glover (Homoptera: Aphididae) on bottle gourd, Lagenaria siceraria (Molina) Standl. (Cucurbitaceae). Int J Life Sci Biotechnol Pharma Rese 4(4):179–183

    Google Scholar 

  • Singh R, Singh K (2015a) Life history parameters of Aphis gossypii glover (Homoptera: Aphididae) reared on three vegetable crops. Int J Res Stud Zool 1(1):1–9

    CAS  Google Scholar 

  • Singh R, Singh G (2015b) Systematics, distribution and host range of Diaeretiella rapae (McIntosh) (Hymenoptera: Braconidae, Aphidiinae). Int J Res Stud Biosci 3(1):1–36

    Google Scholar 

  • Singh R, Singh G (2016) Aphids and their biocontrol. In: Omkar (ed) Ecofriendly pest management for food security. Academic Press, London, pp 63–108

    Chapter  Google Scholar 

  • Singh G, Singh R (2016a) Food plant records of Aphidini (Aphidinae: Aphididae: Hemiptera) in India. J Entomol Zool Stud 5(2):1280–1302

    Google Scholar 

  • Singh G, Singh R (2016b) Distribution of Aphis (Aphis) spiraecola patch 1914 (Aphidini: Aphidinae: Aphididae: Hemiptera) and its food plants recorded in India. Int J Recent Adv Multidiscip Res 3(12):2100–2111

    Google Scholar 

  • Singh G, Singh R (2016c) Distribution and economic importance of Aphis (Aphis) craccivora Koch (Aphidini: Aphidinae: Aphididae: Hemiptera) and its food plants in India. J Recent Adv Multidiscip Res 4(2):2274–2289

    Google Scholar 

  • Singh G, Singh R (2016d) Food plant records of aphids (Aphididae: Sternorrhyncha: Hemiptera) in India belonging to subfamilies Aiceoninae, Anoeciinae, Chaitophorinae and Drepanosiphinae. Int J Zool Investig 2(2):281–295

    Google Scholar 

  • Singh G, Singh R (2017a) Updated checklist of food plants of Macrosiphini (Aphididae: Hemiptera) in India - 1. Int J Res Stud Zool 3(1):6–33

    Google Scholar 

  • Singh G, Singh R (2017b) Updated checklist of food plants of Macrosiphini (Aphididae: Hemiptera) in India - 2. Int J Res Stud Zool 3(1):42–76

    Google Scholar 

  • Singh G, Singh R (2017c) Updated checklist of food plants of Macrosiphini (Aphididae: Hemiptera) in India - 3. Int J Res Stud Zool 3(2):1–31

    Google Scholar 

  • Singh G, Singh R (2017d) Updated checklist of Greenideinae (Aphididae: Hemiptera) and its host-plants in India. Int J Contemp Res Rev 8(3):20191–20219

    Article  Google Scholar 

  • Singh G, Singh R (2017e) Updated check-list of Indian Eriosomatinae (Aphidinae: Aphididae: Hemiptera) and their food plants. J Entomol Zool Stud 5(1):921–936

    Google Scholar 

  • Singh G, Singh R (2017f) Updated checklist of host-plants of Calaphidinae (Aphididae: Hemiptera) in India. Int J Contemp Res Rev 8(2):20171–20190

    Article  Google Scholar 

  • Singh G, Singh R (2018) Updated check-list of Indian Hormaphidinae (Aphididae: Hemiptera) and their food plants. J Entomol Zool Stud 6(2):1345–1352

    Google Scholar 

  • Singh R, Singh G (2019) Species diversity of Indian aphids (Hemiptera: Aphididae). Int J Biol Innov 1(1):27–33

    Article  Google Scholar 

  • Singh H, Rohilla HR, Kalra VK, Yadava TP (1984) Response of brassica varieties sown on different dates to the attack of mustard aphid, Lipaphis erysimi (Kalt). J Oilseeds Res 1:49–56

    CAS  Google Scholar 

  • Singh H, Singh H, Rohilla HR, Singh D (1993) Integrated pest management in rapeseed-mustard crops in Haryana. National Seminar Oilseeds Research and Development in India-Status and Strategies, Aug. 2–5, 1993, Hyderabad, p 117

    Google Scholar 

  • Singh RP, Yazdani SS, Verma GD, Singh VN (1995) Effect of different levels of nitrogen, phosphorus and potash on aphid infestation and yield of mustard. Ind J Entomol 57:18–21

    Google Scholar 

  • Singh R, Biswas S, Pandey S (1996) Dietary role of honeydew on the life-table parameters of a cereal aphid parasitoid, Lysiphlebia mirzai Shuja-Uddin (Hymenoptera: Braconidae). J Appl Zool Res 7:102–103

    Google Scholar 

  • Singh R, Singh K, Upadhyay BS (2000a) Honeydew as a food source for an aphid parasitoid Lipolexis scutellaris Mackauer (Hymenoptera: Braconidae). J Adv Zool 21:76–83

    Google Scholar 

  • Singh R, Singh A, Pandey S (2000b) Ability to switch over alternative host-complexes by an aphid parasitoid Binodoxys indicus (Hymenoptera: Braconidae). Entomol Generalis 25:53–66

    Article  Google Scholar 

  • Singh G, Singh NP, Singh R (2014) Food plants of a major agricultural pest, Aphis gossypii glover (Homoptera: Aphididae) from India: an updated checklist. Int J Life Sci Biotechnol Pharm Res 3(2):1–26

    Google Scholar 

  • Singh R, Singh G, Tiwari AK, Sharma A, Patel S, Pratibha (2015a) Myzus (Nectarosiphon) persicae (Sulzer, 1776) (Homoptera: Aphididae): updated check list of host-plants in India. Int J Zool Investig 1:8–25

    Google Scholar 

  • Singh R, Singh G, Tiwari A, Agrawal R, Sharma A (2015b) Host-plant diversity of aphids (Homoptera: Aphididae) infesting Asteraceae in India. Int J Zool Investig 1(2):137–167

    Google Scholar 

  • Singh G, Prasad M, Singh R (2018) Updated check-list of Lachninae, Lizeriinae, Mindarinae, Phyllaphidinae, Saltusaphidinae, Taiwanaphidinae and Thelaxinae (Aphididae: Hemiptera) and their food plants in India. J Entomol Zool Stud 6(2):3157–3166

    Google Scholar 

  • Sinha R, Singh B, Rai PK, Kumar A, Jamwal S, Sinha BK (2018) Soil fertility management and its impact on mustard aphid, Lipaphis erysimi (Kaltenbach) (Hemiptera: Aphididae). Cogent Food Agric 4:1450941

    Article  CAS  Google Scholar 

  • Ślipiński P, Markó B, Rzeszowski K, Babik H, Czechowski W (2014) Lasius fuliginosus (Hymenoptera: Formicidae) shapes local ant assemblages. North-Western J Zool 10(2):404–412

    Google Scholar 

  • Sloggett JJ, Weisser WW (2002) Parasitoids induce production of the dispersal morph of the pea aphid, Acyrthosiphon pisum. Oikos 98:323–333

    Article  Google Scholar 

  • Sridharan S, Venkatesan S, Prakasan V, Thamburaj S (1990) Influence of nitrogen fertilization on the incidence of sucking pests and pod borer in french bean. South Indian Hortic 38:226–227

    Google Scholar 

  • Srinivasan K, Krishana Moorthy PN (1991) Indian mustard as a trap crop for management of Lepidopterous pests on cabbage. Trop Pest Manage 37:26–32

    Article  Google Scholar 

  • Srivastava A, Singh R (2008) Effect of host-plants on the life-table of Sitobion miscanthi (Takahashi) (Homoptera: Aphididae). J Aphidol 23:1–8

    Google Scholar 

  • Stadler B, Dixon AFG (2005) Ecology and evolution of aphid-ant interactions. Annu Rev Ecol Evol Syst 36:345–372

    Article  Google Scholar 

  • Stadler B, Muller T (1996) Aphid honeydew and its effect on the phyllosphere microflora of Picea abies (L.) Karst. Oecologia 108(4):771

    Article  PubMed  Google Scholar 

  • Stam PA, Abdelrahman AA, Munir B (1994) Comparisons of control action thresholds for Heliothis armigera, Bemisia tabaci and Aphis gossypii on cotton in the Sudan Gezira and Rahad regions. Crop Prot 13(7):503–512

    Article  Google Scholar 

  • Stapleton JJ, Summers CG (2002) Reflective mulches for management of aphids and aphid-borne virus diseases in late-season cantaloupe (Cucumis melo L. var. cantalupensis). Crop Prot 21:891–898

    Article  Google Scholar 

  • Stark JD, Rangus TM (1994) Lethal and sublethal effects of the neem insecticide formulation, ‘Margosan-O’, on the pea aphid. Pestic Sci 41:155–160

    Article  CAS  Google Scholar 

  • Starks KJ, Burton RL (1977) Greenbugs: Determining biotypes, culturing, and screening for plant resistance, with notes on parasitoids. USDA Technical Bulletin, Washington, p 1556

    Google Scholar 

  • Stern VM, Smith RF, van den Bosch R, Hagen KS (1959) The integrated control concept. Hilgardia 29:81–101

    Article  CAS  Google Scholar 

  • Stevens M, Locomme C (2017) Transmission of plant viruses. In: van Emden HF, Harrington R (eds) Aphids as crop pests, 2nd edn. CABI, Wallingford, pp 323–361

    Chapter  Google Scholar 

  • Sun Y, Huang X, Ning Y, Jing W, Bruce TJA, Qi F, Xu Q, Wu K, Zhang Y, Guo Y (2017) TPS46, a rice terpene synthase conferring natural resistance to bird cherry-oat aphid, Rhopalosiphum padi (Linnaeus). Front Plant Sci 8:110

    Article  PubMed  PubMed Central  Google Scholar 

  • Tandon PL (1994) Problems and prospects of inset pest management in fruit trees. In: Dhaliwal GS, Arora R (eds) Trends in agricultural insect Pest management. Commonwealth Publishers, India, p 376

    Google Scholar 

  • Tang YQ, Weathersbee Iii AA, Mayer RT (2002) Effect of neem extract on the brown citrus aphid (Homoptera: Aphididae) and its parasitoid Lysiphlebus testaceipes (Hymenoptera: Aphididae). Environ Entomol 31:172–176

    Article  CAS  Google Scholar 

  • Thornhill NW (1993) The natural history of inbreeding and outbreeding. University of Chicago Press, Chicago, p 575

    Google Scholar 

  • Tingey WM, Singh SR (1980) Environmental factors influencing the magnitude and expression of resistance. In: Maxwell FG, Jennings PR (eds) Breeding plants resistant to insects. Wiley, New Delhi, pp 95–96

    Google Scholar 

  • Tingey WM, Plaisted RL, Laubengayer JE, Mehlenbacher A (1982) Green peach aphid resistance by glandular trichomes in Solanum tuberosum X S. berthaultii hybrids. Amer Potato J 59:241–251

    Article  Google Scholar 

  • Tiwari AK, Singh R (2016) Effect of host-plants on the morphology of green peach aphid, Myzus persicae (Sulzer) (Homoptera: Aphididae). Int J Zool Investig 2(1):133–146

    Google Scholar 

  • Tiwari AK, Singh R (2018) Effect of temperature on the morphology of green peach aphid, Myzus persicae (Sulzer) (Homoptera: Aphididae). Bioinf Pharm Chem Sci 4(5):53–70

    Google Scholar 

  • Toba HH, Paschke JD, Friedman S (1967) Crowding as the primary factor in the production of the agamic alate form of Therioaphis maculata (Homoptera: Aphididae). J Insect Physiol 13:381–396

    Article  Google Scholar 

  • Tsuchida T, Koga R, Fukatsu T (2004) Host-plant specialization governed by facultative symbiont. Science 303:1989

    Article  CAS  PubMed  Google Scholar 

  • Tsuchida T, Koga R, Horikawa M, Tsunoda T, Maoka T, Matsumoto S, Simon J, Fukatsu T (2010) Symbiotic bacterium modifies aphid body color. Science 330(6007):1102–1104

    Article  CAS  PubMed  Google Scholar 

  • Tsuchida T, Koga R, Matsumoto S, Fukatsu T (2011) Interspecific symbiont transfection confers a novel ecological trait to the recipient insect. Biol Lett 7:245–248

    Article  PubMed  Google Scholar 

  • Tsumuki H, Nagatsuka H, Kawada K, Kanehisa K (1990) Comparison of nutrient reservation in apterous and alate pea aphids, Acyrthosiphon pisum (Harris): 1. Developmental time and sugar content. Appl Entomol Zool 25:215–221

    Article  Google Scholar 

  • Tylianakis JM, Didham RK, Wratten D (2004) Improved fitness of aphid parasitoids receiving resource subsidies. Ecology 85(3):658–666

    Article  Google Scholar 

  • Ulrichs CH, Mewis I, Schnitzler WH (2001) Efficacy of neem and diatomaceous earth against cowpea aphids and their deleterious effect on predating Coccinellidae. J Appl Entomol 125:571–575

    Article  CAS  Google Scholar 

  • Upadhyay S (1995) Influence of sowing dates and fertilizer levels on the incidence of aphid (Lipaphis erysimi Kalt.) on Indian mustard. Ind J Entomol 57:294–296

    Google Scholar 

  • van Emden HF (1966) Studies on the relations of the insect and host-plant. III. A comparison of the reproduction of Brevicoryne brassicae and Myzus persicae (Hemiptera:Aphididae) on Brussels sprout plants supplied with different rates of nitrogen and potassium. Entomol Exp Appl 9:444–460

    Article  Google Scholar 

  • van Emden HF (2017) Integrated Pest management and introduction to IPM case studies. In: van Emden HF, Harrington R (eds) Aphids as crop pests. Oxford University Press, Oxford, pp 533–544

    Chapter  Google Scholar 

  • van Emden HF, Eastop VF, Hughes RD, Way MJ (1969) The ecology of Myzus persicae. Annu Rev Entomol 14:197–270

    Article  Google Scholar 

  • van Lenteren JC (2000) Measures of success in biological control of arthropods by augmentation of natural enemies. In: Gurr G, Wratten S (eds) Measures of success in biological control. Kluwer Academic, Dordrecht, pp 77–103

    Chapter  Google Scholar 

  • van Lenteren JC (2003) Environmental risk assessment of exotic natural enemies used in inundative biological control. BioControl 48:3–38

    Article  Google Scholar 

  • van Lenteren JC, Woets J (1988) Biological and integrated pest control in greenhouses. Annu Rev Entomol 33:239–269

    Article  Google Scholar 

  • van Lenteren JC, Roskam MM, Timmer R (1997) Commercial mass production and pricing of organisms for biological control of pests in Europe. Biol Control 10:143–149

    Article  Google Scholar 

  • Vandermoten S, Mescher MC, Francis F, Haubruge E, Verheggen FJ (2011) Aphid alarm pheromone: an overview of current knowledge on biosynthesis and functions. Insect Biochem Mol Biol 42(3):155–163

    Article  PubMed  CAS  Google Scholar 

  • Veena (2009) Understanding ecology. Discovery Publishing House, New Delhi, p 344

    Google Scholar 

  • Veeravel R, Baskaran P (1994) Effect of ant attendance on the multiplication levels of aphid (Aphis gossypii glover) in brinjal ecosystem. J Aphidol 8:131–135

    Google Scholar 

  • Verghese PS (2015) Control of pyrethrum against the tomato disease CMV caused by aphids. Int J Curr Res Chem Pharm Sci 2(10):40–44

    CAS  Google Scholar 

  • Verma KD (2000) Economically important aphids and their management. In: Upadhyay RK, Mukerji KG, Dubey OP (eds) IPM system in agriculture, vol 7. Aditya Books Private Ltd., New Delhi, pp 143–168

    Google Scholar 

  • Vermora JM, Raghvani KL, Joshi MD, Makadia RR, Boricha HV, Dalwadi NG (2010) Chemical control of aphid Lipaphis erysimi (Kalt.) on cabbage. Int J Plant Prot 3(1):101–103

    Google Scholar 

  • Vorburger C, Gehrer L, Rodriguez P (2010) A strain of the bacterial symbiont Regiella insecticola protects aphids against parasitoids. Biol Lett 6(1):109–111

    Article  PubMed  Google Scholar 

  • Watanabe S, Murakami T, Yoshimura J, Hasegawa E (2016) Color polymorphism in an aphid is maintained by attending ants. Sci Adv 2(9):e1600606

    Article  PubMed  PubMed Central  Google Scholar 

  • Waterhouse DF (1998) Biological control of insect pests: southeast Asian prospects. ACIAR Monograph 51:548

    Google Scholar 

  • Watt M, Hales DF (1996) Dwarf phenotype of the cotton aphid, Aphis gossypii glover (Hemiptera: Aphididae). Aust J Entomol 35:153–159

    Article  Google Scholar 

  • Webster B, Bruce T, Dufour S, Birkemeyer C, Birkett MA, Hardie J, Pickett JA (2008) Identification of volatile compounds used in host location by the black bean aphid, Aphis fabae. J Chem Ecol 34:1153–1161

    Article  CAS  PubMed  Google Scholar 

  • Weisser W, Braendle C, Minoretti N (1999) Predator-induced morphological shift in the pea aphid. Proc R Soc B 266:1175–1181

    Article  PubMed Central  Google Scholar 

  • Wetzel T (1995) Getridblattlause in Pflanzenschutz und im Agrookosystem. Archiv für Phytopathologie und Pflanzenschutz 29:437–469

    Article  Google Scholar 

  • Will T, van Bel AJE (2006) Physical and chemical interactions between aphids and plants. J Exp Bot 57(4):729–737

    Article  CAS  PubMed  Google Scholar 

  • Will T, Vilcinskasa A (2015) The structural sheath protein of aphids is required for phloem feeding. Mol Biol 57:34–40

    CAS  Google Scholar 

  • Wise IL, Lamb RJ (1990) Economic injury level of the potato aphid in flax (1990 Annual Report). Winnipeg Research Station, pp 26–27

    Google Scholar 

  • Wise IL, Lamb RJ, Kenaschuk EO (1995) Effects of the potato aphid Macrosiphum euphorbiae (Thomas) (Homoptera: Aphididae) on oilseed flax, and stage-specific thresholds for control. Can Entomol 127(2):213–224

    Article  Google Scholar 

  • Wohlers P (1982) Effect of alarm pheromone (E)-β-farnesene on aphid behaviour during flight and after landing on plants. Z Angew Entomol 93:102–108

    Article  CAS  Google Scholar 

  • Wool D (2004) Galling aphids: specialization, biological complexity, and variation. Annu Rev Entomol 49(1):175–192

    Article  CAS  PubMed  Google Scholar 

  • Wyatt IJ (1985) Aphid control by parasites. In: Hussey NW, Scopes N (eds) Biological pest control. The Glasshouse experience. Blanford Press, Poole, pp 134–137

    Google Scholar 

  • Xibei W, Yihao F, Shizhong L, Lirong Z, Huadi W (1994) A study on the damage and economics threshold of the soybean aphid at the seedling stage. Plant Prot 20:12–13

    Google Scholar 

  • Yamaguchi Y (1985) Sex ratios of an aphid subject to local mate competition with variable maternal condition. Nature 318:460

    Article  Google Scholar 

  • Yang S, Yang SYY, Zhang CP, Wei J, Kuang RP (2009) Population dynamics of Myzus persicae on tobacco in Yunnan province, China, before and after augmentative releases of Aphidius gifuensis. Biocontrol Sci Tech 19:219–228

    Article  Google Scholar 

  • Yi F, Zou C, Hu Q, Hu M (2012) The joint action of destruxins and botanical insecticides (rotenone, azadirachtin and paeonolum) against the cotton aphid, Aphis gossypii glover. Molecules 17:7533–7542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zalom FG (2010). Pesticide use practices in integrated pest management. Hayes’ handbook of pesticide toxicology

    Google Scholar 

  • Zhu J, Park K-C (2007) Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator Coccinella septempunctata. J Chem Ecol 30:1733–1746

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, R., Singh, G. (2021). Aphids. In: Omkar (eds) Polyphagous Pests of Crops. Springer, Singapore. https://doi.org/10.1007/978-981-15-8075-8_3

Download citation

Publish with us

Policies and ethics