Skip to main content
Log in

Experimental manipulation of colony genetic diversity had no effect on short-term task efficiency in the Argentine ant Linepithema humile

  • Original Article
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Genetic diversity might increase the performance of social groups by improving task efficiency or disease resistance, but direct experimental tests of these hypotheses are rare. We manipulated the level of genetic diversity in colonies of the Argentine ant Linepithema humile, and then recorded the short-term task efficiency of these experimental colonies. The efficiency of low and high genetic diversity colonies did not differ significantly for any of the following tasks: exploring a new territory, foraging, moving to a new nest site, or removing corpses. The tests were powerful enough to detect large effects, but may have failed to detect small differences. Indeed, observed effect sizes were generally small, except for the time to create a trail during nest emigration. In addition, genetic diversity had no statistically significant impact on the number of workers, males and females produced by the colony, but these tests had low power. Higher genetic diversity also did not result in lower variance in task efficiency and productivity. In contrast to genetic diversity, colony size was positively correlated with the efficiency at performing most tasks and with colony productivity. Altogether, these results suggest that genetic diversity does not strongly improve short-term task efficiency in L. humile, but that worker number is a key factor determining the success of this invasive species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2 a
Fig. 3 a
Fig. 4

Similar content being viewed by others

References

  • Anderson C, Ratnieks FLW (1999) Task partitioning in insect societies. I. Effect of colony size on queueing delay and colony ergonomic efficiency. Am Nat 154:521–535

    Article  Google Scholar 

  • Baer B, Schmid-Hempel P (1999) Experimental variation in polyandry affects parasite loads and fitness in a bumble-bee. Nature 397:151–154

    Article  Google Scholar 

  • Baer B, Schmid-Hempel P (2001) Unexpected consequences of polyandry for parasitism and fitness in the bumblebee, Bombus terrestris. Evolution 55:1639–1643

    Google Scholar 

  • Benois A (1973) Incidences des facteurs écologiques sur le cycle annuel et l’activité saisonnière de la fourmi d’Argentine Iridomyrmex humilis (Mayr) (Hymenoptera, Formicidae), dans la région d’Antibes. Insectes Soc 20:267–296

    Google Scholar 

  • Beshers SN, Fewell JH (2001) Models of division of labor in social insects. Annu Rev Entomol 46:413–440

    Article  CAS  PubMed  Google Scholar 

  • Boomsma JJ, Ratnieks FLW (1996) Paternity in eusocial Hymenoptera. Philos Trans R Soc Lond B 351:947–975

    Google Scholar 

  • Bourke AFG, Franks NR (1995) Social evolution in ants. Princeton University Press, Princeton

  • Brown MJF, Schmid-Hempel P (2003) The evolution of female multiple mating in social hymenoptera. Evolution 57:2067–2081

    PubMed  Google Scholar 

  • Cahan SH, Keller L (2003) Complex hybrid origin of genetic caste determination in harvester ants. Nature 424:306–309

    Article  Google Scholar 

  • Cahan SH, Parker JD, Rissing SW, Johnson RA, Polony TS, Weiser MD, Smith DR (2002) Extreme genetic differences between queens and workers in hybridizing Pogonomyrmex harvester ants. Proc R Soc Lond B 269:1871–1877

    Google Scholar 

  • Carlin NF, Reeve HK, Cover SP (1993) Kin discrimination and division of labour among matrilines in the polygynous carpenter ant, Camponotus planatus. In: Keller L (ed) Queen number and sociality in insects. Oxford University Press, Oxford, pp 362–401

  • Clutton-Brock T (2002) Breeding together: kin selection and mutualism in cooperative vertebrates. Science 296:69–72

    Article  CAS  PubMed  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences. Erlbaum, Hillsdale, NJ

  • Cole BJ, Wiernasz DC (1999) The selective advantage of low relatedness. Science 285:891–893

    Article  CAS  PubMed  Google Scholar 

  • Cole BJ, Wiernasz DC (2000) Colony size and reproduction in the western harvester ant, Pogonomyrmex occidentalis. Insectes Soc 47:249–255

    Google Scholar 

  • Costa JT, Ross KG (2003) Fitness effects of group merging in a social insect. Proc R Soc Lond B 270:1697–1702

    Google Scholar 

  • Crozier RH, Fjerdingstad EJ (2001) Polyandry in social Hymenoptera—disunity in diversity? Ann Zool Fenn 38:267–285

    Google Scholar 

  • Crozier RH, Page RE (1985) On being the right size: male contributions and multiple mating in social Hymenoptera. Behav Ecol Sociobiol 18:105–115

    Article  Google Scholar 

  • Crozier RH, Pamilo P (1996) Evolution of social insect colonies: sex allocation and kin selection. Oxford University Press, Oxford

    Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839

    Article  Google Scholar 

  • Erdfelder E, Faul F, Buchner A (1996) GPOWER: a general power analysis program. Behav Res Methods Instrum Comput 28:1–11

    Google Scholar 

  • Fjerdingstad EJ, Gertsch PJ, Keller L (2003) The relationship between multiple mating by queens, within-colony genetic variability and fitness in the ant Lasius niger. J Evol Biol 16:844–853

    Article  Google Scholar 

  • Fraser VS, Kaufmann B, Oldroyd BP, Crozier RH (2000) Genetic influence on caste in the ant Camponotus consobrinus. Behav Ecol Sociobiol 47:188–194

    Article  Google Scholar 

  • Frumhoff PC, Baker J (1988) A genetic component to division of labour within honey bee colonies. Nature 333:358–361

    Article  Google Scholar 

  • Fuchs S, Schade V (1994) Lower performance in honeybee colonies of uniform paternity. Apidologie 25:155–168

    Google Scholar 

  • Giraud T, Pedersen JS, Keller L (2002) Evolution of supercolonies: the Argentine ants of southern Europe. Proc Natl Acad Sci USA 99:6075–6079

    Google Scholar 

  • Gordon DM (1995) The expandable network of ant exploration. Anim Behav 50:995–1007

    Article  Google Scholar 

  • Gordon DM, Mehdiabadi NJ (1999) Encounter rate and task allocation in harvester ants. Behav Ecol Sociobiol 45:370–377

    Article  Google Scholar 

  • Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statisics. J Hered 86:485–486

    Google Scholar 

  • Holway DA (1999) Competitive mechanisms underlying the displacement of native ants by the invasive Argentine ant. Ecology 80:238–251

    Google Scholar 

  • Holway DA, Case TJ (2000) Mechanisms of dispersed central-place foraging in polydomous colonies of the Argentine ant. Anim Behav 59:433–441

    Article  Google Scholar 

  • Holway DA, Case TJ (2001) Effects of colony-level variation on competitive ability in the invasive Argentine ant. Anim Behav 61:1181–1192

    Article  Google Scholar 

  • Holway DA, Suarez AV, Case TJ (1998) Loss of intraspecific aggression in the success of a widespread invasive social insect. Science 282:949–952

    Article  CAS  PubMed  Google Scholar 

  • Holway DA, Lach L, Suarez AV, Tsutsui ND, Case TJ (2002) The causes and consequences of ant invasions. Annu Rev Ecol Syst 33:181–233

    Article  Google Scholar 

  • Hughes WOH, Boomsma JJ (2004) Genetic diversity and disease resistance in leaf-cutting ant societies. Evolution 58:1251–1260

    Google Scholar 

  • Hughes WOH, Sumner S, Van Borm S, Boomsma JJ (2003) Worker caste polymorphism has a genetic basis in Acromyrmex leaf-cutting ants. Proc Natl Acad Sci USA 100:9394–9397

    Article  CAS  PubMed  Google Scholar 

  • Human KG, Gordon DM (1996) Exploitation and interference competition between the invasive argentine ant, Linepithema humile, and native ant species. Oecologia 105:405–412

    Article  Google Scholar 

  • Human KG, Gordon DM (1999) Behavioral interactions of the invasive Argentine ant with native ant species. Insectes Soc 46:159–163

    Google Scholar 

  • Ingram KK (2002) Flexibility in nest density and social structure in invasive populations of the Argentine ant, Linepithema humile. Oecologia 133:492–500

    Article  Google Scholar 

  • Jones JC, Myerscough MR, Graham S, Oldroyd BP (2004) Honey bee nest thermoregulation: diversity promotes stability. Science 305:402–404

    Article  Google Scholar 

  • Julian GE, Cahan S (1999) Undertaking specialization in the desert leaf-cutter ant Acromyrmex versicolor. Anim Behav 58:437–442

    Article  Google Scholar 

  • Julian GE, Fewell JH, Gadau J, Johnson RA, Larrabee D (2002) Genetic determination of the queen caste in an ant hybrid zone. Proc Natl Acad Sci USA 99:8157–8160

    Article  Google Scholar 

  • Keller L, Chapuisat M (1999) Cooperation among selfish individuals in insect societies. Bioscience 49:899–909

    Google Scholar 

  • Keller L, Chapuisat M (2001) Eusociality and cooperation. Nature Encyclopedia of Life Sciences, http://www.els.net/. Nature, London

  • Keller L, Reeve HK (1994) Genetic variability, queen number, and polyandry in social hymenoptera. Evolution 48:694–704

    Google Scholar 

  • Keller L, Cherix D, Ulloa-Chacón P (1989a) Description of a new artificial diet for rearing ant colonies as Iridomyrmex humilis, Monomorium pharaonis and Wasmannia auropunctata (Hymenoptera; Formicidae). Insectes Soc 36:348–352

    Google Scholar 

  • Keller L, Passera L, Suzzoni JP (1989b) Queen execution in the Argentine ant Iridomyrmex humilis (Mayr). Physiol Entomol 14:157–163

    Google Scholar 

  • Kraus B, Page RE (1998) Parasites, pathogens, and polyandry in social insects. Am Nat 151:383–391

    Article  Google Scholar 

  • Krieger MJB, Keller L (1999) Low polymorphism at 19 microsatellite loci in a French population of Argentine ants (Linepithema humile). Mol Ecol 8:1078–1080

    Article  Google Scholar 

  • Krieger MJB, Keller L (2000) Mating frequency and genetic structure of the Argentine ant Linepithema humile. Mol Ecol 9:119–126

    Article  Google Scholar 

  • Liersch S, Schmid-Hempel P (1998) Genetic variation within social insect colonies reduces parasite load. Proc R Soc Lond B 265:221–225

    Google Scholar 

  • Neumann P, Moritz RFA (2000) Testing genetic variance hypotheses for the evolution of polyandry in the honeybee (Apis mellifera L.). Insectes Soc 47:271–279

    Google Scholar 

  • Oldroyd BP, Rinderer TE, Harbo JR, Buco SM (1992) Effects of intracolonial genetic diversity on honeybee (Hymenoptera: Apidae) colony performances. Ann Entomol Soc Am 85:335–343

    Google Scholar 

  • Oldroyd BP, Sylvester HA, Wongsiri S, Rinderer TS (1994) Task specialization in a wild bee, Apis florea (Hymenoptera: Apidae), revealed by RFLP banding. Behav Ecol Sociobiol 34:25–30

    Google Scholar 

  • Oster GF, Wilson EO (1978) Caste and ecology in the social insects. Princeton University Press, Princeton

  • Page RE, Erber J (2002) Levels of behavioral organization and the evolution of division of labor. Naturwissenschaften 89:91–106

    Article  CAS  PubMed  Google Scholar 

  • Page RE, Robinson GE, Fondrk MK, Nasr ME (1995) Effects of worker genotypic diversity on honey bee colony development and behavior (Apis mellifera L.). Behav Ecol Sociobiol 36:387–396

    Google Scholar 

  • Palmer KA, Oldroyd BP (2003) Evidence for intra-colonial genetic variance in resistance to American foulbrood of honey bees (Apis mellifera): further support for the parasite/pathogen hypothesis for the evolution of polyandry. Naturwissenschaften 90:265–268

    Article  Google Scholar 

  • Passera L (1994) Characteristics of tramp species. In: Williams DF (ed) Exotic ants biology, impact, and control of introduced species. Westview, Boulder, Colo, pp 23–43

  • Passera L, Keller L (1987) Energy investment during the differentiation of sexuals and workers in the Argentine ant Iridomyrmex humilis (Mayr). Mitt Schweiz Entomol Ges 60:249–260

    Google Scholar 

  • Passera L, Keller L, Suzzoni J-P (1988) Control of brood male production in the Argentine ant Iridomyrmex humilis (Mayr). Insectes Soc 35:19–33

    Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 242:258–275

    Google Scholar 

  • Queller DC, Strassmann JE (2002) The many selves of social insects. Science 296:311–313

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Google Scholar 

  • Robinson GE (1992) Regulation of division of labor in insect societies. Annu Rev Entomol 37:637–665

    Article  CAS  PubMed  Google Scholar 

  • Robinson GE, Page RE (1988) Genetic determination of guarding and undertaking in honey-bee colonies. Nature 333:356–358

    Article  Google Scholar 

  • Schmid-Hempel P, Crozier RH (1999) Polyandry versus polygyny versus parasites. Philos Trans R Soc Lond B 354:507–515

    Google Scholar 

  • Sherman PW, Seeley TD, Reeve HK (1988) Parasites, pathogens, and polyandry in social Hymenoptera. Am Nat 131:602–610

    Article  Google Scholar 

  • Sherman PW, Seeley TD, Reeve HK (1998) Parasites, pathogens, and polyandry in honey bees. Am Nat 151:392–396

    Article  Google Scholar 

  • Starr CK (1984) Sperm competition, kinship, and sociality in the aculeate Hymenoptera. In: Smith RL (ed) Sperm competition and the evolution of animal mating systems. Academic, Orlando, Fla, pp 427–464

  • Stuart RJ, Page RE (1991) Genetic component to division of labor among workers of a leptothoracine ant. Naturwissenschaften 78:375–377

    Google Scholar 

  • Suarez AV, Holway DA, Case TJ (2001) Patterns of spread in biological invasions dominated by long-distance jump dispersal: insights from Argentine ants. Proc Natl Acad Sci USA 98:1095–1100

    Article  Google Scholar 

  • Sundström L, Ratnieks FLW (1998) Sex ratio conflicts, mating frequency, and queen fitness in the ant Formica truncorum. Behav Ecol 9:116–121

    Google Scholar 

  • Tarpy DR (2003) Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth. Proc R Soc Lond B 270:99–103

    Google Scholar 

  • Tsutsui ND, Case TJ (2001) Population genetics and colony structure of the argentine ant (Linepithema humile) in its native and introduced ranges. Evolution 55:976–985

    CAS  PubMed  Google Scholar 

  • Tsutsui ND, Suarez AV (2003) The colony structure and population biology of invasive ants. Conserv Biol 17:48–58

    Article  Google Scholar 

  • Vargo EL, Passera L (1991) Pheromonal and behavioral queen control over the production of gynes in the Argentine ant Iridomyrmex humilis (Mayr). Behav Ecol Sociobiol 28:161–169

    Google Scholar 

  • Volny VP, Gordon DM (2002) Genetic basis for queen-worker dimorphism in a social insect. Proc Natl Acad Sci USA 99:6108–6111

    Article  Google Scholar 

  • Wiernasz DC, Perroni CL, Cole BJ (2004) Polyandry and fitness in the western harvester ant, Pogonomyrmex occidentalis. Mol Ecol 13:1601–1606

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Swiss National Science Foundation (grant 31-61934.00 to M.C. and several grants to L.K.). We thank Lotta Sundström and the anonymous reviewers for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Chapuisat.

Additional information

Communicated by L. Sundström

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosset, H., Keller, L. & Chapuisat, M. Experimental manipulation of colony genetic diversity had no effect on short-term task efficiency in the Argentine ant Linepithema humile. Behav Ecol Sociobiol 58, 87–98 (2005). https://doi.org/10.1007/s00265-004-0890-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-004-0890-6

Keywords

Navigation