Skip to main content
Log in

The Horocycle Flow and the Laplacian on Hyperbolic Surfaces of Infinite Genus

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

Consider a complete hyperbolic surface which can be partitioned into countably many pairs of pants whose boundary components have lengths less than some constant. We show that any infinite ergodic invariant Radon measure for the horocycle flow is either supported on a single horocycle associated with a cusp, or corresponds canonically to an extremal positive eigenfunction of the Laplace–Beltrami operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Aaronson, H. Nakada, O. Sarig, R. Solomyak, Invariant measures and asymptotics for some skew products, Israel J. Math. 128 (2002), 93–134; Corrections: Israel J. Math. 138 (2003), 377–379.

  2. M. Babillot, On the classification of invariant measures for horospherical foliations on nilpotent covers of negatively curved manifolds, in “Random Walks and Geometry” (V.A. Kaimanovich, ed.), de Gruyter, Berlin (2004), 319–335.

  3. Babillot M., Ledrappier F. (1998) Lalley’s theorem on periodic orbits of hyperbolic flows, Ergodic Theory Dynam. Systems 18(1): 17–39

    MathSciNet  MATH  Google Scholar 

  4. M. Babillot, F. Ledrappier, Geodesic paths and horocycle flows on Abelian covers, Lie Groups and Ergodic Theory (Mumbai, 1996), Tata Inst. Fund. Res. Stud. Math. 14, Tata Inst. Fund. Res., Bombay (1998), 1–32,

  5. A.F. Beardon, The Geometry of Discrete Groups, Springer Graduate Texts in Mathematics 91 (1983).

  6. Burger M. (1990) Horocycle flow on geometrically finite surfaces. J. Duke Math 61(3): 779–803

    Article  MathSciNet  MATH  Google Scholar 

  7. Dal’bo F. (1999) Remarques sur le spectre des longueurs d’une surface et comptages. Bol. Soc. Brasil. Mat. (N.S.) 30(2): 1991

    MathSciNet  Google Scholar 

  8. Dani S.G. (1978) Invariant measures of horospherical flows on noncompact homogeneous spaces. Invent. Math. 47(2): 101–138

    Article  MathSciNet  MATH  Google Scholar 

  9. Dani S.G., Smillie J. (1984) Uniform distribution of horocycle orbits for Fuchsian groups. Duke Math. J. 51: 185–194

    Article  MathSciNet  MATH  Google Scholar 

  10. Furstenberg H. (1972) The unique ergodicity of the horocycle flow. Springer Lecture Notes in Math. 318: 95–115

    Article  MathSciNet  Google Scholar 

  11. Y. Guivarc’h, L. Ji, J.C. Taylor, Compactifications of Symmetric Spaces, Birkäuser Progress in Mathematics 156 (1998).

  12. Y. Guivarc’h, A. Raugi, Products of random matrices: convergence theorems, in “Random Matrices and Their Applications (Brunswick, Maine, 1984)”, Contemp. Math. 50, Amer. Math. Soc., Providence, RI (1986), 31-54.

  13. J.H. Hubbard, Teichmüller Theory and Applications to Geometry, Topology, and Dynamics, Vol. 1: Teichmüller theory, Matrix Edition, 2006.

  14. Kaimanovich V.A. (2000) Ergodic properties of the horocycle flow and classification of Fuchsian groups. J. Dynam. Control Systems 6(1): 21–56

    Article  MathSciNet  MATH  Google Scholar 

  15. Karpelevich F.I. (1965) The geometry of geodesics and the eigenfunctions of the Laplacian on symmetric spaces, Trans. Moskov. Math. Soc. 14: 48–185

    MATH  Google Scholar 

  16. S. Katok, Fuchsian Groups, Chicago Lectures in Math., The U. of Chicago Press, 1992.

  17. Ledrappier F., Sarig O. (2007) Invariant measures for the horocycle flow on periodic hyperbolic surfaces. Israel J. Math. 160: 281–317

    Article  MathSciNet  MATH  Google Scholar 

  18. Patterson S.J. (1977) Spectral theory and Fuchsian groups. Math. Proc. Cambridge Philos. Soc. 81(1): 59–75

    Article  MathSciNet  MATH  Google Scholar 

  19. Patterson S.J. (1979) Some examples of Fuchsian groups. Proc. London Math. Soc. (3) 39(2): 276–298

    Article  MathSciNet  MATH  Google Scholar 

  20. Ratner M. (1991) On Raghunathan’s measure conjecture. Ann. of Math. (2) 134(3): 545–607

    Article  MathSciNet  Google Scholar 

  21. T. Roblin, Ergodicité et équidistribution en courbure négative, Mém. Soc. Math. Fr. (N.S.) 95 (2003).

  22. Sarig O. (2004) Invariant measures for the horocycle flow on Abelian covers. Inv. Math. 157: 519–551

    Article  MathSciNet  MATH  Google Scholar 

  23. Schapira B. (2005) Equidistribution of the horocycles of a geometrically finite surface. Int. Math. Res. Not. 40: 2447–2471

    Article  MathSciNet  Google Scholar 

  24. K. Schmidt, Cocycles on Ergodic Transformation Groups, Macmillan Lectures in Mathematics 1, Macmillan Company of India, Ltd., Delhi, 1977 (available from the author’s homepage).

  25. C. Series, Geometrical methods of symbolic coding, in “Ergodic Theory, Symbolic Dynamics, and Hyperbolic Spaces” (T. Bedford, M. Keane, C. Series, eds.), Oxford Univ. Press (1991), 125–151.

  26. Series C. (1980) The Poincaré flow of a foliation. Amer. J. Math. 102(1): 93–128

    Article  MathSciNet  MATH  Google Scholar 

  27. Sullivan D. (1987) Related aspects of positivity in Riemannian geometry. J. Diff. Geom. 25: 327–351

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omri Sarig.

Additional information

The author was partially supported by NSF grant 0652966 and a Sloan Research Fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarig, O. The Horocycle Flow and the Laplacian on Hyperbolic Surfaces of Infinite Genus. Geom. Funct. Anal. 19, 1757–1812 (2010). https://doi.org/10.1007/s00039-010-0048-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-010-0048-9

Keywords and phrases

2010 Mathematics Subject Classification

Navigation