Skip to main content
Log in

Invariant measures for the horocycle flow on periodic hyperbolic surfaces

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We classify the ergodic invariant Radon measures for the horocycle flow on geometrically infinite regular covers of compact hyperbolic surfaces. The method is to establish a bijection between these measures and the positive minimal eigenfunctions of the Laplacian of the surface. Two consequences arise: if the group of deck transformations G is of polynomial growth, then these measures are classified by the homomorphisms from G 0 to ℝ where G 0G is a nilpotent subgroup of finite index; if the group is of exponential growth, then there may be more than one Radon measure which is invariant under the geodesic flow and the horocycle flow. We also treat regular covers of finite volume surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Aaronson, O. Sarig and R. Solomyak, Tail-invariant measures for some suspension semiflows, Discrete and Continuous Dynamical Systems 8 (2002), 725–735.

    Article  MATH  MathSciNet  Google Scholar 

  2. R. Adler, F-expansions revisited, in Recent advances in topological dynamics (Proc. Conf., Yale University, New Haven, Conneticut, 1972; in honor of Gustav Arnold Nedlund), Lecture Notes in Mathematics, Vol. 318, Springer, Berlin, 1973, pp. 1–5.

    Chapter  Google Scholar 

  3. M. Babillot, On the classification of invariant measures for horospherical foliations on nilpotent covers of negatively curved manifolds, in Random walks and geometry Walter de Gruyter GmbH & Co. KG, Berlin, 2004, pp. 319–335.

    Google Scholar 

  4. M. Babillot and F. Ledrappier, Geodesic paths and horocycle flows on Abelian covers, in Proceedings of the International Colloquium on Lie Groups and Ergodic Theory, Mumbai 1996, Narosha Publishing House, New Delhi, 1998, pp. 1–32.

    Google Scholar 

  5. A. Beardon, The Geometry of Discrete Groups, (corrected reprint of the 1983 original), Graduate Texts in Mathematics 91, Springer-Verlag, New-York, 1995.

    Google Scholar 

  6. M. B. Bekka and M. Mayer, Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces, London Mathematical Society Lecture Note Series, 269, Cambridge University Press, Cambridge, 2000.

    Google Scholar 

  7. P. Bougerol and L. Élie, Existence of positive harmonic functions on groups and on covering manifolds, Annales de l’Institut Henri Poincaré. Probabilités et Statistiques 31 (1995), 59–80.

    MATH  Google Scholar 

  8. R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, 470, Springer-Verlag, Berlin-New York, 1975.

    Google Scholar 

  9. R. Bowen and C. Series, Markov maps associated with Fuchsian groups, Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50 (1979), 153–170.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Burger, Horocycle flow on geometrically finite surfaces, Duke Mathematical Journal 61 (1990), 779–803.

    Article  MATH  MathSciNet  Google Scholar 

  11. J.-P. Conze and Y. Guivarc’h, Propriété de droite fixe et fonctions propres des opé rateurs de convolution, Séminaire de Probabilités, I (Univ. Rennes, Rennes, 1976), Exp. No. 4, Dept. Math. Informat., Univ. Rennes, Rennes, 1976, 22 pp.

    Google Scholar 

  12. Y. Coudene, Cocycles and stable foliations of Axiom A flows, Ergodic Theory and Dynamical Systems 21 (2001), 767–775.

    Article  MATH  MathSciNet  Google Scholar 

  13. F. Dal’bo, Topologie du feuilletage fortement stable, Annales de l’Institut Fourier (Grenoble) 50 (2000), 981–993.

    MATH  MathSciNet  Google Scholar 

  14. F. Dal’bo, Remarques sur le spectre des longueurs d’une surface et comptages, Boletim da Sociedade Brasileira de Matemática (N.S.) 30 (1999), 199–221.

    Article  MATH  MathSciNet  Google Scholar 

  15. S. G. Dani, Invariant measures of horospherical flows on noncompact homogeneous spaces, Inventiones Mathematicae 47 (1978), 101–138.

    Article  MATH  MathSciNet  Google Scholar 

  16. S. G. Dani and J. Smillie, Uniform distributrion of horocycle orbits for Fuchsian groups, Duke Mathematical Journal 51 (1984), 185–194.

    Article  MATH  MathSciNet  Google Scholar 

  17. P. Eberlein, Geodesic flows on negatively curved manifolds. II, Transactions of the American Mathematical Society 178 (1973), 57–82.

    Article  MATH  MathSciNet  Google Scholar 

  18. J. Feldman and C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Transactions of the American Mathematical Society 234 (1977), 289–324.

    Article  MATH  MathSciNet  Google Scholar 

  19. H. Furstenberg, The unique ergodicity of the horocycle flow, Springer Lecture Notes 318 (1972), 95–115.

  20. M. Gromov, Groups of polynomial growth and expanding maps, Publications Mathématiques de l’Institut des Hautes Études Scientifiques 53 (1981), 53–73.

    Article  MATH  MathSciNet  Google Scholar 

  21. Y. Guivarc’h and A. Raugi, Products of random matrices: convergence theorems, in Random matrices and their applications (Brunswick, Maine, 1984), Contemporary Mathematics, 50, American Mathematical Society, Providence, RI, 1986, pp. 31–54.

    Google Scholar 

  22. H. Iwaniec, Introduction to the spectral theory of automorphic forms, Biblioteca de la Revista Matemática Iberoamericana, Madrid, 1995, xiv+247 pp.

    MATH  Google Scholar 

  23. L. Ji and R. MacPherson, Geometry of compactifications of locally symmetric spaces, Annales de l’Institut Fourier (Grenoble) 52 (2002), 457–559.

    MATH  MathSciNet  Google Scholar 

  24. V. Kaimanovich, Ergodic properties of the horocycle flow and classification of Fuchsian groups, Journal of Dynamic and Control Systems 6 (2000), 21–56.

    Article  MATH  MathSciNet  Google Scholar 

  25. V. A. Kaimanovich, Brownian motion and harmonic functions on covering manifolds. An entropic approach, Doklady Akademii Nauk SSSR 288 (1986), no.5. Engl. Transl. in Soviet Mathematics Doklady 33 (1986), 812–816.

  26. F. I. Karpelevich, The geometry of geodesics and the eigenfunctions of the Laplacian on symmetric spaces, Trudy Moskovskogo Matematičeskogo Obščestva 14 (1965), 48–185 (Russian); translated as Trans. Moskov. Math. Soc. 14 (1965), 51–199.

    MATH  Google Scholar 

  27. S. Katok, Fuchsian Groups, Chicago Lectures in Mathematics, University of Chicago Press, 1992.

  28. V. Lin and Y. Pinchover, Manifolds with group actions and elliptic operators, Memoirs of the American Mathematical Society 112 (1994), 78pp.

  29. T. Lyons and D. Sullivan, Function theory, random paths and covering spaces, Journal of Differential Geometry 19 (1984), 299–323.

    MATH  MathSciNet  Google Scholar 

  30. B. Marcus, Unique ergodicity of the horocycle flow: variable negative curvature case, Israel Journal of Mathematics 21 (1975), 133–144.

    MATH  MathSciNet  Google Scholar 

  31. G. A. Margulis, Positive harmonic functions on nilpotent groups, Soviet Mathematics Doklady 166 (1966), 241–244.

    MathSciNet  Google Scholar 

  32. M. Ratner, On Raghunathan’s measure conjecture, Annals of Mathematics (2) 134 (1991), 545–607.

    Article  MathSciNet  Google Scholar 

  33. D. J. S. Robinson, A Course in the Theory of Groups, Second edition. Graduate Texts in Mathematics 80, Springer-Verlag, New York, 1996, xviii+499 pp.

    Google Scholar 

  34. T. Roblin, Un théorème de Fatou pour les densités conformes avec applications aux rev etements galoisiens en courbure négative, Israel Journal of Mathematics 147 (2005), 333–357.

    MathSciNet  MATH  Google Scholar 

  35. O. Sarig, Invariant measures for the horocycle flow on Abelian covers, Inventiones Mathematicae 157 (2004), 519–551.

    Article  MATH  MathSciNet  Google Scholar 

  36. P. Sarnak, Some Applications of Modular Forms, Cambridge Tracts in Mathematics 99, Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  37. K. Schmidt, Cocycles on Ergodic Transformation Groups, Macmillan Lectures in Mathematics, Vol. 1, Macmillan Company of India, Ltd., Delhi, 1977.

    Google Scholar 

  38. C. Series, Geometrical methods of symbolic coding, in Ergodic Theory, Symbolic Dynamics, and Hyperbolic Spaces (T. Bedford, M. Keane, C. Series, eds.), Oxford University Press, 1991, pp. 125–151.

  39. D. Sullivan, Related aspects of positivity in Riemannian geometry, Journal of Differential Geometry 25 (1987), 327–351.

    MATH  MathSciNet  Google Scholar 

  40. D. Sullivan, Discrete conformal groups and measurable dynamics, Bulletin of the American Mathematical Society (N.S.) 6 (1982), 57–73.

    Article  MATH  MathSciNet  Google Scholar 

  41. D. Sullivan, The density at infinity of a discrete group of hyperbolic motions, Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50 (1979), 171–202.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The first author was supported by NSF grant 0500630.

The second author was supported by NSF grant 0400687.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ledrappier, F., Sarig, O. Invariant measures for the horocycle flow on periodic hyperbolic surfaces. Isr. J. Math. 160, 281–315 (2007). https://doi.org/10.1007/s11856-007-0064-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-007-0064-0

Keywords

Navigation