Skip to main content
Log in

Heating effect by perianth retention on developing achenes and implications for seed production in the alpine herb Ranunculus glacialis

  • Original Paper
  • Published:
Alpine Botany Aims and scope Submit manuscript

Abstract

Petals of the alpine, arctic perennial herb Ranunculus glacialis are retained also during seed maturation, as opposed to most species where the petals wither after they have contributed to insect attraction during anthesis. To assess the adaptive significance of perianth retention after anthesis for annual reproduction, we experimentally removed perianths of R. glacialis and explored its impact on achene surface temperature, the growth rate of achenes, carbon allocation, and seed production. Perianth removal immediately after anthesis decreased achene surface temperature, decelerated the growth of achenes and reduced seed set, compared to plants with intact perianth. Measurement of mass allocation showed no further perianth growth during seed maturation, and a 13C labelling experiment demonstrated that photosynthate allocation to perianths during seed maturation was much smaller than developing achenes. Thus, annual seed production of R. glacialis might be accelerated by perianth retention during seed maturation, while the cost of perianth retention is small compared to that of seed development. In alpine and arctic environments, cold temperatures limit the growth rate of achenes. Hence, the heating of developing achenes by perianth retention might be an adaptive trait that enhances female reproductive success in this arctic, alpine species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersson S (2005) Floral costs in Nigella sativa (Ranunculaceae): compensatory responses to perianth removal. Am J Bot 92:279–283

    Article  PubMed  Google Scholar 

  • Arft AM, Walker MD, Gurevitch J, Alatalo JM, Bret-Harte MS, Dale M, Diemer M, Gugerli F, Henry GHR, Jones MH, Hollister RD, Jonsdottir IS, Laine K, Lévesque E, Marion GM, Molau U, Mølgaard P, Nordenhäll U, Raszhivin V, Robinson CH, Starr G, Stenström A, Stenström M, Totland Ø, Turner PL, Walker LJ, Webber PJ, Welker JM, Wookey PA (1999) Responses of tundra plants to experimental warming: meta-analysis of the International Tundra Experiment. Ecol Monogr 69:491–511

    Google Scholar 

  • Ashman TL (1994) A dynamic perspective on the physiological cost of reproduction in plants. Am Nat 144:300–316

    Article  Google Scholar 

  • Ashman TL, Schoen DJ (1996) Floral longevity: Fitness consequences and resource costs. In: Lloyd DG, Barrett SCH (eds) Floral biology. Chapman and Hall, New York, pp 112–139

    Chapter  Google Scholar 

  • Bell G (1985) On the function of flowers. Proc R Soc B 224:223–265

    Article  Google Scholar 

  • Bell G, Bliss LC (1979) Autecology of Kobresia bellardii: why winter snow accumulation limits local distribution. Ecol Monogr 49:377–402

    Article  Google Scholar 

  • Bliss LC (1971) Arctic and alpine plant life cycles. Ann Rev Ecol Syst 2:405–438

    Article  Google Scholar 

  • Bokhorst S, Huiskes A, Aerts R, Convey P, Cooper EJ, Dalen L, Erschbamer B, Gudmundsson J, Hofgaard A, Hollister RD, Johnstone J, Jonsdottir IS, Lebouvier M, Van De Vijver B, Wahren CH, Dorrepaal E (2013) Variable temperature effects of open top chambers at polar and alpine sites explained by irradiance and snow depth. Global Change Biol 19:64–74

    Article  Google Scholar 

  • Deleens E, Cliquet JB, Prioul JL (1994) Use of 13C and 15N plant label near natural abundance for monitoring carbon and nitrogen partitioning. Aust J Plant Physiol 21:133–146

    Article  CAS  Google Scholar 

  • Dyer AG, Whitney HM, Arnold SEJ, Glover BJ, Chittka L (2006) Bees associate warmth with floral colour. Nature 442:525

    Article  CAS  PubMed  Google Scholar 

  • Fajardo A, Piper FI, Pfund L, Körner C, Hoch G (2012) Variation of mobile carbon reserves in trees at the alpine treeline ecotone is under environmental control. New Phytol 195:794–802

    Article  CAS  PubMed  Google Scholar 

  • Fitzmaurice GM, Laird NM, Ware JH (2004) Applied longitudinal analysis. Wiley-Interscience, Hoboken

    Google Scholar 

  • Galen C (1989) Measuring pollinator-mediated selection on morphometric floral traits: bumblebees and the alpine sky pilot, Polemonium viscosum. Evolution 43:882–890

    Article  Google Scholar 

  • Galen C (1999) Why do flowers vary? The functional ecology of variation in flower size and form within natural plant populations. Bioscience 49:631–640

    Article  Google Scholar 

  • Galen C (2006) Solar furnaces or swamp coolers: costs and benefits of water use by solar-tracking flowers of the alpine snow buttercup, Ranunculus adoneus. Oecologia 148:195–201

    Article  PubMed  Google Scholar 

  • Galen C, Dawson TE, Stanton ML (1993) Carpels as leaves: meeting the carbon cost of reproduction in an alpine buttercup. Oecologia 95:187–193

    Article  Google Scholar 

  • Gimenez-Benavides L, Escudero A, Iriondo JM (2007) Reproductive limits of a late-flowering high-mountain Mediterranean plant along an elevational climate gradient. New Phytol 173:367–382

    Article  CAS  PubMed  Google Scholar 

  • Gulmon SL, Mooney HA (1986) Costs of defence and their effects on plant productivity. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, London, pp 681–698

    Google Scholar 

  • Haig D, Westoby M (1988) On limits to seed production. Am Nat 131:757–759

    Article  Google Scholar 

  • Haig D, Westoby M (1991) Seed size, pollination costs and angiosperm success. Evol Ecol 5:231–247

    Article  Google Scholar 

  • Haselberg C, Ludders P, Stosser R (2004) Pollen tube growth, fertilization and ovule longevity in the carob tree (Ceratonia siliqua L.). J Appl Bot 78:32–40

    Google Scholar 

  • Hedhly A, Hormaza JI, Herrero M (2003) The effect of temperature on stigmatic receptivity in sweet cherry (Prunus avium L.). Plant Cell Environ 26:1673–1680

    Article  Google Scholar 

  • Henry GHR, Molau U (1997) Tundra plants and climate change: the International Tundra Experiment (ITEX). Global Change Biol 3(Suppl 1):1–9

    Article  Google Scholar 

  • Hoch G, Körner C (2003) The carbon charging of pines at the climatic treeline: a global comparison. Oecologia 135:10–21

    PubMed  Google Scholar 

  • Hoch G, Körner C (2012) Global patterns of mobile carbon stores in trees at the high-elevation tree line. Global Ecol Biogeogr 21:861–871

    Article  Google Scholar 

  • Horibata S, Hasegawa SF, Kudo G (2007) Cost of reproduction in a spring ephemeral species, Adonis ramosa (Ranunculaceae): carbon budget for seed production. Ann Bot 100:565–571

    Article  PubMed  PubMed Central  Google Scholar 

  • Ida TY, Harder LD, Kudo G (2013) Demand-driven resource investment in annual seed production by a perennial angiosperm precludes resource limitation. Ecology 94:51–61

    Article  PubMed  Google Scholar 

  • Inouye DW, McGuire AD (1991) Effects of snowpack on timing and abundance of flowering in Delphinium nelsonii (Ranunculaceae): implications for climate change. Am J Bot 78:997–1001

    Article  Google Scholar 

  • Ishii HS, Harder LD (2006) The size of individual Delphinium flowers and the opportunity for geitonogamous pollination. Funct Ecol 20:1115–1123

    Article  Google Scholar 

  • Kenward MG, Roger JH (1997) Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53:983–997

    Article  CAS  PubMed  Google Scholar 

  • Kevan PG (1990) Sexual differences in temperatures of blossoms on a dioecious plant, Salix arctica: significance for life in the arctic. Arct Alp Res 22:283–289

    Article  Google Scholar 

  • Körner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115:445–459

    Article  Google Scholar 

  • Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer, Berlin

    Book  Google Scholar 

  • Kudo G (1991) Effects of snow-free period on the phenology of alpine plants inhabiting snow patches. Arct Alp Res 23:436–443

    Article  Google Scholar 

  • Kudo G (1995) Ecological significance of flower heliotropism in the spring ephemeral Adonis ramosa (Ranunculaceae). Oikos 72:14–20

    Article  Google Scholar 

  • Kudo G, Ida TY (2013) Early onset of spring increases the phenological mismatch between plants and pollinators. Ecology 94:2311–2320

    Article  PubMed  Google Scholar 

  • Kudo G, Ida TY, Tani T (2008) Linkage between phenology, pollination, photosynthesis, and reproduction in deciduous forest understory plants. Ecology 89:321–331

    Article  PubMed  Google Scholar 

  • Ladinig U, Hacker J, Neuner G, Wagner J (2013) How endangered is sexual reproduction of high-mountain plants by summer frosts? Frost resistance, frequency of frost events and risk assessment. Oecologia 171:743–760

    Article  PubMed  PubMed Central  Google Scholar 

  • Lloyd DG (1988) Benefits and costs of biparental and uniparental reproduction in plants. In: Michod RE, Levin BR (eds) The evolution of sex. Sinauer, Sunderland, pp 233–252

    Google Scholar 

  • Lord J, Westoby M (2006) Accessory costs of seed production. Oecologia 150:310–317

    Article  PubMed  Google Scholar 

  • Lord J, Westoby M (2012) Accessory costs of seed production and the evolution of angiosperms. Evolution 60:200–210

    Article  Google Scholar 

  • Lovett-Doust J, Cavers PB (1982) Biomass allocation in hermaphrodite flowers. Can J Bot 60:2530–2534

    Article  Google Scholar 

  • Miller GA (1986) Pubescence, floral temperature and fecundity in species of Puya (Bromeliaceae) in the Ecuadorian Andes. Oecologia 70:155–160

    Article  Google Scholar 

  • Molau U (1993) Relationships between flowering phenology and life history strategies in tundra plants. Arct Alp Res 25:391–402

    Article  Google Scholar 

  • Morris WF, Doak DF (1998) Life history of the long-lived gynodioecious cushion plant, Silene acaulis (Caryophyllaceae), inferred from size-based population projection matrices. Am J Bot 85:784–793

    Article  CAS  PubMed  Google Scholar 

  • Oberhuber W, Swidrak I, Pirkebner D, Gruber A (2011) Temporal dynamics of nonstructural carbohydrates and xylem growth in Pinus sylvestris exposed to drought. Can J For Res 41:1590–1597

    Article  PubMed  PubMed Central  Google Scholar 

  • Obeso JR (2002) The cost of reproduction in plants. New Phytol 155:321–348

    Article  Google Scholar 

  • Seymour RS, Schultze-Motel P (1996) Thermoregulating lotus flowers. Nature 383:305

    Article  CAS  Google Scholar 

  • Simard SW, Durall DM, Jones MD (1997) Carbon allocation and carbon transfer between Betula papyrifera and Pseudotsuga menziesii seedlings using a 13C pulse-labeling method. Plant Soil 191:41–55

    Article  CAS  Google Scholar 

  • Smith AP (1975) Insect pollination and heliotropism in Oritrophium limnophilum (Compositae) of the Andean paramo. Biotropica 7:284–286

    Article  Google Scholar 

  • Song B, Zhang Z-Q, Stöcklin J, Yang Y, Niu Y, Chen J-G, Sun H (2013) Multifunctional bracts enhance plant fitness during flower and seed development in Rheum nobile (Polygonaceae), a giant herb endemic to the high Himalayas. Oecologia 172:359–370

    Article  PubMed  Google Scholar 

  • Stanton ML, Galen C (1989) Consequences of flower heliotropism for reproduction in an alpine buttercup (Ranunculus adoneus). Oecologia 78:477–485

    Article  Google Scholar 

  • Steinacher G, Wagner J (2012) Effect of temperature on the progamic phase in high-mountain plants. Plant Biol 14:295–305

    Article  CAS  PubMed  Google Scholar 

  • Sunmonu N, Ida TY, Kudo G (2013) Photosynthetic compensation by the reproductive structures in the spring ephemeral Gagea lutea. Plant Ecol 214:175–188

    Article  Google Scholar 

  • Thompson K, Stewart AJA (1981) The measurement and meaning of reproductive effort in plants. Am Nat 117:205–211

    Article  Google Scholar 

  • Totland Ø (1996) Heliotropism in an alpine population of Ranunculus acris (Ranunculaceae): effects on flower temperature, insect visitation, and seed production. Am J Bot 83:452–458

    Article  Google Scholar 

  • Totland Ø (2004) No evidence for a role of pollinator discrimination in causing selection on flower size through female reproduction. Oikos 106:558–564

    Article  Google Scholar 

  • Totland Ø, Alatalo JM (2002) Effects of temperature and date of snowmelt on growth, reproduction, and flowering phenology in the arctic/alpine herb, Ranunculus glacialis. Oecologia 133:168–175

    Article  Google Scholar 

  • Tsukaya H, Tsuge T (2001) Morphological adaptation of inflorescences in plants that develop at low temperatures in early spring: the convergent evolution of a “downy Plants”. Plant Biol 3:536–543

    Article  Google Scholar 

  • Wagner J, Ladinig U, Steinacher G, Larl I (2011) From the flower bud to the mature seed: Timing and dynamics of flower and seed development in high-mountain plants. In: Lutz C (ed) Plants in alpine regions. Springer, New York

    Google Scholar 

  • Weiss MR (1995) Floral color change: a widespread functional convergence. Am J Bot 82:167–185

    Article  Google Scholar 

  • Wiens D (1984) Ovule survivorship, brood size, life history, breeding systems, and reproductive success in plants. Oecologia 64:47–53

    Article  Google Scholar 

  • Willson MF, Michaels HJ, Bertin RI, Benner B, Rice S, Lee TD, Hartgerink AP (1990) Intraspecific variation in seed packaging. Am Mid Nat 123:179–185

    Article  Google Scholar 

Download references

Acknowledgments

We thank the staff of the Finse Field Station of University of Oslo and Bergen for the support of our stay in Finse, and two anonymous reviewers for helpful comments on the manuscript. This study was supported by a Japan-Norway Researcher Mobility Programme FY2013 [228029/F11] by Japan Society for the Promotion of Science and the Research Council of Norway to T. Y. Ida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Y. Ida.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ida, T.Y., Totland, Ø. Heating effect by perianth retention on developing achenes and implications for seed production in the alpine herb Ranunculus glacialis . Alp Botany 124, 37–47 (2014). https://doi.org/10.1007/s00035-014-0129-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00035-014-0129-8

Keywords

Navigation