Skip to main content
Log in

Multifunctional bracts enhance plant fitness during flowering and seed development in Rheum nobile (Polygonaceae), a giant herb endemic to the high Himalayas

  • Physiological ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Specialized bracts are thought to be important for the successful reproduction of some plants and are regarded as adaptations to diverse driving forces. However, few empirical studies have quantified the adaptive significance of bracts within a cost–benefit framework. We explored the adaptive significance of large and showy bracts for reproduction in Rheum nobile, a giant herb endemic to the high Himalayas. We examined whether the bracts enhance reproductive success during flowering and seed development. Bracts increased flower and fruit temperature on sunny days, greatly decreased the intensity of ultraviolet-B (UV-B) radiation reaching flowers and fruits, and prevented pollen grains being washed away by rain. Experiments indicated that high temperature could promote pollen germination, while pollen grains exposed to rain and UV-B radiation at ambient levels were seriously damaged. Furthermore, bract removal decreased the number of pollinators visiting flowers. When bracts were removed before or after flowering, fecundity and progeny quality were adversely affected, but seed predation by larvae of pollinators decreased. A cost–benefit analysis demonstrated that the cost of bracts, i.e., increased seed predation, is modest. Our results suggest that the bracts of R. nobile promote pollen germination, protect pollen grains from rain and intense UV-B radiation, enhance pollinator visitation during flowering, and facilitate the development of fertilized ovules during seed development. We conclude that multifunctional bracts of R. nobile are an effective adaptive strategy in alpine environments and might have been selected for because of abiotic environmental conditions as well as for enhancing pollination success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Armbruster WS (1997) Exaptations link evolution of plant-herbivore and plant-pollinator interactions: a phylogenetic inquiry. Ecology 78:1661–1672

    Google Scholar 

  • Ashman TL, Cole DH, Bradburn M (2004) Sex-differential resistance and tolerance to herbivory in a gynodioecious wild strawberry. Ecology 85:2550–2559. doi:10.1890/03-0495

    Article  Google Scholar 

  • Borges RM, Gowda V, Zacharias M (2003) Butterfly pollination and high-contrast visual signals in a low-density distylous plant. Oecologia 136:571–573. doi:10.1007/s00442-003-1336-y

    Article  PubMed  Google Scholar 

  • Boyer JS (1982) Plant productivity and the environment. Science 218:443–448

    Article  PubMed  CAS  Google Scholar 

  • Bynum MR, Smith WK (2001) Floral movements in response to thunderstorms improve reproductive effort in the alpine species Gentiana algida (Gentianaceae). Am J Bot 88:1088–1095

    Article  PubMed  CAS  Google Scholar 

  • Caldwell MM (1981) Plant response to solar ultraviolet radiation. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology. I. Response to the physical environment. Encyclopedia of plant physiology, new series, vol 12. Springer, Berlin, pp 169–197

    Chapter  Google Scholar 

  • Chakrabarti B, Singh SD, Nagarajan S, Aggarwal PK (2011) Impact of temperature on phenology and pollen sterility of wheat varieties. Aust J Crop Sci 5:1039–1043

    Google Scholar 

  • Chowdhery HJ, Agrawala DK (2009) Rheum nobile Hook. f. and Thoms. (Polygonaceae)-a rare and highly specialized plant of Himalayan region. Indian J Bot 32:145–148

    Google Scholar 

  • Cooley JR (1995) Floral heat rewards and direct benefits to insect pollinators. Ann Entomol Soc Am 88:576–579

    Google Scholar 

  • Dafni A (1992) Pollination ecology: a practical approach. Oxford University Press, Oxford

    Google Scholar 

  • DeCeault MT, Polito VS (2010) High temperatures during bloom can inhibit pollen germination and tube growth, and adversely affect fruit set in the Prunus domestica cultvars ‘improved French’ and ‘muir beauty’. Acta Hortic 874:163–168

    Google Scholar 

  • Devlin RM, Witham FH (1983) Plant physiology, 4th edn. Willard Grant, Boston

    Google Scholar 

  • Dieringer G, Cabrera-R L, Lara M, Loya L, Reyes-Castillo P (1999) Beetle pollination and floral thermogenicity in Magnolia tamaulipana (Magnoliaceae). Int J Plant Sci 160:64–71

    Article  Google Scholar 

  • Egli DB, Wardlaw IF (1980) Temperature response of seed growth characteristics of soybeans. Agron J 72:560–564

    Article  Google Scholar 

  • Feng HY, An LZ, Tan LL, Hou ZD, Wang XL (2000) Effect of enhanced ultraviolet-B radiation on pollen germination and tube growth of 19 taxa in vitro. Environ Exp Bot 43:45–53. doi:10.1016/S0098-8472(99)00042-8

    Article  Google Scholar 

  • Galen C, Butchart B (2003) Ants in your plants: effects of nectar-thieves on pollen fertility and seed-siring capacity in the alpine wildflower, Polemonium viscosum. Oikos 101:521–528. doi:10.1034/j.1600-0706.2003.12144.x

    Article  Google Scholar 

  • Galen C, Stanton ML (2003) Sunny-side up: flower heliotropism as a source of parental environmental effects on pollen quality and performance in the snow buttercup, Ranunculus adoneus (Ranunculaceae). Am J Bot 90:724–729. doi:10.3732/ajb.90.5.724

    Article  PubMed  Google Scholar 

  • Gulias J, Traveset A, Riera N, Mus M (2004) Critical stages in the recruitment process of Rhamnus alaternus L. Ann Bot 93:723–731. doi:10.1093/aob/mch100

    Article  PubMed  CAS  Google Scholar 

  • Harley P, Deem G, Flint S, Caldwell M (1996) Effects of growth under elevated UV-B on photosynthesis and isoprene emission in Quercus gambelii and Mucuna pruriens. Glob Change Biol 2:149–154. doi:10.1111/j.1365-2486.1996.tb00060.x

    Article  Google Scholar 

  • He YP, Duan YW, Liu JQ, Smith WK (2006) Floral closure in response to temperature and pollination in Gentiana straminea Maxim. (Gentianaceae), an alpine perennial in the Qinghai-Tibetan Plateau. Plant Syst Evol 256:17–33. doi:10.1007/s00606-005-0345-1

    Article  Google Scholar 

  • Herre EA, Jandér C, Machado CA (2008) Evolutionary ecology of figs and their associates: recent progress and outstanding puzzles. Annu Rev Ecol Evol Syst 39:439–458. doi:10.1146/annurev.ecolsys.37.091305.110232

    Article  Google Scholar 

  • Herrera CM (1995) Floral biology, microclimate, and pollination by ectothermic bees in an early-blooming herb. Ecology 76:218–228

    Article  Google Scholar 

  • Herrera J (1997) The role of colored accessory bracts in the reproductive biology of Lavandula stoechas. Ecology 78:494–504

    Google Scholar 

  • Huang SQ, Takahashi Y, Dafni A (2002) Why dose the flower stalk of Pulsatilia cernua (Ranunculaceae) bend during anthesis? Am J Bot 89:1599–1603. doi:10.3732/ajb.89.10.1599

    Article  PubMed  Google Scholar 

  • Hughes HG, Lee CW (1991) Low-temperature preservation of Clianthus formosus pollen. HortScience 26:1411–1412

    Google Scholar 

  • Iwashina T, Omori Y, Kitajima J, Akiyama S, Suzuki T, Ohba H (2004) Flavonoids in translucent bracts of the Himalayan Rheum nobile (Polygonaceae) as ultraviolet shieds. J Plant Res 117:101–107. doi:10.1007/s10265-003-0134-2

    Article  PubMed  CAS  Google Scholar 

  • Kaur G, Kumar S, Nayyar H, Upadhyaya HD (2008) Cold stress injury during the pod-filling phase in Chickpea (Cicer arietinum L.): effects on quantitative and qualitative components of seeds. J Agron Crop Sci 194:457–464. doi:10.1111/j.1439-037X.2008.00336.x

    Google Scholar 

  • Keasar T, Sadeh A, Gerchman Y, Shmida A (2009) The signaling function of an extra-floral display: what selects for signal development? Oikos 118:1752–1759. doi:10.1111/j.1600-0706.2009.17626.x

    Article  Google Scholar 

  • Kevan PG (1975) Sun-tracking solar furnaces in high arctic flowers: significance for pollination and insect. Science 189:723–726

    Article  PubMed  CAS  Google Scholar 

  • Kevan P, Giurfa M, Chittka L (1996) Why are there so many and so few white flowers? Trends Plant Sci 1:280–284. doi:10.1016/1360-1385(96)20008-1

    Article  Google Scholar 

  • Knutson RM (1974) Heat production and temperature regulation in eastern skunk cabbage. Science 186:746–747

    Article  PubMed  CAS  Google Scholar 

  • Körner C (2003) Alpine plant life, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Kumar A, Omae H (2008) Estimation of seed yield and yield attributes by cumulative temperature in common bean (Phaseolus vulgaris). Indian J Agric Sci 78:127–130

    Google Scholar 

  • Lloyd DG, Barrett SCH (1996) Floral biology: Studies on floral evolution in animal-pollinated plants. Chapman and Hall, New York

    Google Scholar 

  • Lora J, Pérez de Oteyza MA, Fuentetaja P, Hormaza JI (2006) Low temperature storage and in vitro germination of cherimoya (Annona cherimola Mill.) pollen. Sci Hortic 108:91–94. doi:10.1016/j.bbr.2011.03.031

    Article  CAS  Google Scholar 

  • Mao YY, Huang SQ (2009) Pollen resistance to water in 80 angiosperm species: flower structures protect rain-susceptible pollen. New Phytol 183:892–899. doi:10.1111/j.1469-8137.2009.02925.x

    Article  PubMed  Google Scholar 

  • Musil CF (1994) Ultraviolet-B irradiation of seeds affects photochemical and reproductive performance of the arid-environment ephemeral Dimorphotheca pluvialis. Environ Exp Bot 34:371–378. doi:10.1016/0098-8472(94)90019-1

    Article  Google Scholar 

  • Musil CF (1995) Differential effects of elevated ultraviolet-B radiation on the photochemical and reproductive performances of dicotyledonous and monocotyledonous arid-environment ephemerals. Plant Cell Environ 18:844–854. doi:10.1111/j.1365-3040.1995.tb00593.x

    Article  CAS  Google Scholar 

  • Nagy KA, Odell DK, Seymour RS (1972) Temperature regulation by the inflorescence of Philodendron. Science 178:1195–1197

    Article  PubMed  CAS  Google Scholar 

  • Nayyar H, Kaur G, Kumar S, Upadhyaya HD (2007) Low temperature effects during seed filling on chickpea genotypes (Cicer arietinum L.): probing mechanisms affecting seed reserves and yield. J Agron Crop Sci 193:336–344. doi:10.1111/j.1439-037X.2007.00269.x

    Article  Google Scholar 

  • Nilsson LA (1988) The evolution of flowers with deep corolla tubes. Nature 334:147–149

    Article  Google Scholar 

  • Ohba H (1988) The alpine flora of the Nepal Himalayas: an introductory note. In: Ohba H, Malla SB (eds) The Himalayan plants, vol 1. University of Tokyo Press, Tokyo, pp 19–46

    Google Scholar 

  • Omori Y, Ohba H (1996) Pollen development of Rheum nobile Hook. f. and Thomson (Polygonaceae), with reference to its sterility induced by bract removal. Bot J Linn Soc 122:269–278

    Google Scholar 

  • Omori Y, Ohba H (1999) Thermal condition of the inflorescence of a glasshouse plant, Rheum nobile Hook. f. and Thoms., and microclimatic features of its habitat in Jaljale Himal, east Nepal. Newsl Himal Bot 25:5–11

    Google Scholar 

  • Omori Y, Takayama H, Ohba H (2000) Selective light transmittance of translucent bracts in the Himalayan giant glasshouse plant Rheum nobile Hook. f. and Thomson (Polygonaceae). Bot J Linn Soc 132:19–27. doi:10.1006/bojl.1999.0280

    Google Scholar 

  • Patiño S, Grace J (2002) The cooling of convolvulaceous flowers in a tropical environment. Plant Cell Environ 25:41–51. doi:10.1046/j.0016-8025.2001.00801.x

    Article  Google Scholar 

  • Sapir Y, Shmida A, Ne’eman G (2006) Morning floral heat as a reward to the pollinators of the Oncocyclus irises. Oecologia 147:53–59. doi:10.1007/s00442-005-0246-6

    Article  PubMed  Google Scholar 

  • Sato S, Peet MM, Thomas JF (2002) Determining critical pre- and post-anthesis periods and physiological process in Lycopersicon esculentum mill. exposed to moderately elevated temperature. J Exp Bot 53:1187–1195. doi:10.1093/jexbot/53.371.1187

    Article  PubMed  CAS  Google Scholar 

  • Seymour RS, Schultze-Motel P (1997) Heat-producing flowers. Endeavour 21:125–129

    Article  Google Scholar 

  • Seymour RS, White CR, Gibernau M (2003) Heat reward for insect pollinators. Nature 426:243–244. doi:10.1038/426243a

    Article  PubMed  CAS  Google Scholar 

  • Skubatz H, Williamson PS, Schneider EL, Meeuse BJD (1990) Cyanide-insensitive respiration in thermogenic flowers of Victoria and Nelumbo. J Exp Bot 41:1335–1339. doi:10.1093/jxb/41.10.1335

    Article  CAS  Google Scholar 

  • Strauss SY, Whittall JB (2006) Non-pollinator agents of selection on floral traits. In: Harder LD, Barrett SCH (eds) Ecology and evolution of flowers. Oxford University Press, Oxford, pp 120–138

    Google Scholar 

  • Sun JF, Gong YB, Renner SS, Huang SQ (2008) Multifunctional bracts in the dove tree Davidia involucrata (Nyssaceae: Cornales): rain protection and pollinator attraction. Am Nat 171:119–124. doi:10.1086/523953

    Article  PubMed  Google Scholar 

  • Svensson E, Calsbeek R (2012) The adaptive landscape in evolutionary biology. Oxford University Press, Oxford

    Google Scholar 

  • Terashima I, Masuzawa T, Ohba H (1993) Photosynthetic characteristics of a giant alpine plant, Rheum nobile Hook.f. et Thoms. and of some other alpine species measured at 4300 m, in the Eastern Himalaya, Nepal. Oecologia 95:194–201

    Article  Google Scholar 

  • Torabinejad J, Caldwell MM, Flint SD, Durham S (1998) Susceptibility of pollen to UV-B radiation: an assay of 34 taxa. Am J Bot 85:360–369

    Article  PubMed  CAS  Google Scholar 

  • Totland ö (1996) Flower heliotropism in an alpine population of Ranunculus acris (Ranunculaceae): effects on flower temperature, insect visitation, and seed production. Am J Bot 83:452–458

    Article  Google Scholar 

  • Tsukaya H, Tsuge T (2001) Morphological adaptation of inflorescences in plants that develop at low temperatures in early spring: the convergent evolution of “downy plants”. Plant Biol 3:536–543. doi:10.1055/s-2001-17727

    Article  Google Scholar 

  • von Balthazar M, Endress PK (1999) Floral bract function, flowering process and breeding systems of Sarcandra and Chloranthus (Chloranthaceae). Plant Syst Evol 218:161–178. doi:10.1007/BF01089225

    Article  Google Scholar 

  • Wang Y (2006) Yunnan mountain climate. Science and Technology, Kunming

    Google Scholar 

  • Wang Y, Meng LL, Yang YP, Duan YW (2010) Change in floral orientation in Anisodus luridus (Solanaceae) protects pollen grains and facilitates development of fertilized ovules. Am J Bot 97:1618–1624. doi:10.3732/ajb.1000010

    Article  PubMed  Google Scholar 

  • Warren J, Mackenzie S (2001) Why are all colour combinations not equally represented as flower-colour polymorphisms? New Phytol 151:237–241

    Article  Google Scholar 

  • Waser NM, Price MV (1983) Pollinator behaviour and natural selection for flower colour in Delphinium nelsonii. Nature 302:422–424

    Article  Google Scholar 

  • Weberling F (1992) Morphology of flowers and inflorescences. Cambridge University Press, Cambridge

    Google Scholar 

  • Yang Y, Sun H (2009) The bracts of Saussurea velutina (Asteraceae) protect inflorescences from fluctuating weather at high elevations of the Hengduan Mountains, Southwestern China. Arct Antarct Alp Res 41:515–521. doi:10.1657/1938-4246-41.4.515

    Article  Google Scholar 

  • Zhang DY, Liu BB, Zhao CM, Lu X, Wan DS, Ma F, Chen LT, Liu JQ (2010a) Ecological functions and differentially expressed transcripts of translucent bracts in an alpine ‘glasshouse’ plant Rheum nobile (Polygonaceae). Planta 231:1505–1511. doi:10.1007/s00425-010-1133-x

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Ai HL, Yu WB, Wang H, Li DZ (2010b) Flower heliotropism of Anemone rivularis (Ranunculaceae) in the Himalayas: effects on floral temperature and reproductive fitness. Plant Ecol 209:301–312. doi:10.1007/s11258-010-9739-4

    Article  Google Scholar 

  • Zhu QL, Yu GR, Cai F, Liu XA, Li ZQ, Su W, Hu L (2005) Spatialization research on ultraviolet radiation in China. Resour Sci 27:108–113

    Google Scholar 

Download references

Acknowledgments

We thank De-Li Peng, Gao Chen, and Yun-Gang Guo for their support during the experiments. We are also grateful to two anonymous reviewers for their constructive comments to the manuscript. This work was supported by the National Natural Science Foundation of China (40930209, 31061160184, 31100179, 31200184), Hundred Talents Program of the Chinese Academy of Sciences (2011312D11022), the Natural Science Foundation of Yunnan Province (2011FB102), Western Light Talent Culture Project to B. Song and China Postdoctoral Science Foundation funded project (2012T50787).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Sun.

Additional information

Communicated by Russell Monson.

B. Song and Z.-Q. Zhang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 146 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, B., Zhang, ZQ., Stöcklin, J. et al. Multifunctional bracts enhance plant fitness during flowering and seed development in Rheum nobile (Polygonaceae), a giant herb endemic to the high Himalayas. Oecologia 172, 359–370 (2013). https://doi.org/10.1007/s00442-012-2518-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-012-2518-2

Keywords

Navigation