Skip to main content
Log in

ON ALGEBRAIC VOLUME DENSITY PROPERTY

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

A smooth affine algebraic variety X equipped with an algebraic volume form ω has the algebraic volume density property (AVDP) if the Lie algebra generated by complete algebraic vector fields of ω-divergence zero coincides with the space of all algebraic vector fields of ω-divergence zero. We develop an effective criterion of verifying whether a given X has AVDP. As an application of this method we establish AVDP for any homogeneous space X = G/R that admits a G-invariant algebraic volume form where G is a linear algebraic group and R is a closed reductive subgroup of G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Andersén, Volume-preserving automorphisms ofn, Complex Variables Theory Appl. 14 (1990), no. 1-4, 223-235.

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Andersén, L. Lempert, On the group of holomorphic automorphisms ofn, Invent. Math. 110 (1992), no. 2, 371-388.

    Article  MathSciNet  MATH  Google Scholar 

  3. I. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch, M. Zaidenberg, Flexible varieties and automorphism groups, Duke Math. J., 162 (2013), no. 4, 767-823.

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Bump, Lie Groups, Graduate Texts in Mathematics, Springer Science+Business Media, New York, 2004.

  5. F. Donzelli, Algebraic Density Property of Homogeneous Spaces, PhD thesis, University of Miami, 2009.

  6. F. Donzelli, A. Dvorsky, S. Kaliman, Algebraic density property of homogeneous spaces, Transform. Groups 15 (2010), no. 3, 551-576.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Dubouloz, D. Finston, On exotic affine 3-spheres, J. Algebraic Geom. 23 (2014), no. 3, 445-469.

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Forstnerič, Stein Manifolds and Holomorphic Mappings. The Homotopy Principle in Complex Analysis, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, A Series of Modern Surveys in Mathematics, Vol. 56, Springer, Heidelberg, 2011.

  9. F. Forstnerič, J.-P. Rosay, Approximation of biholomorphic mappings by automorphisms ofn, Invent. Math. 112 (1993), no. 2, 323-349.

    Article  MathSciNet  MATH  Google Scholar 

  10. T. Fujita, On topology of non-complete algebraic surfaces, J. Fac. Sci. Univ. Tokyo 29 (1982), 503-566.

    MathSciNet  MATH  Google Scholar 

  11. A. Grothendieck, On the de Rham cohomology of algebraic varieties, Inst. Hautes Etudes Sci. Publ. Math. 29 (1966), 95-105.

    Article  MathSciNet  MATH  Google Scholar 

  12. Дж. Xaджиeв, Некоторые вопросы теории векторных инвариантов, Maт. сб. 72(114) (1967), no. 3, 420-435. Engl. transl.: Dž. Hadžiev, Some questions of the theory of vector invariants, Math. USSR-Sbornik 1 (1967), no. 3, 383-396.

  13. P. Heinzner, Geometric invariant theory on Stein spaces, Math. Ann. 289 (1991), no. 4, 631-662.

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Ivarsson, F. Kutzschebauch, Holomorphic factorization of mappings into SL n (ℂ), Ann. Math. 175 (2012), no. 1, 45-69.

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Kaliman, F. Kutzschebauch, Criteria for the density property of complex manifolds, Invent. Math. 172 (2008), no. 1, 71-87.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Kaliman, F. Kutzschebauch, Density property for hypersurfaces \( uv=p\left(\overline{x}\right) \), Math. Z. 258 (2008), no. 1, 115-131.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Kaliman, F. Kutzschebauch, On the present state of the Andersen-Lempert theory, in: Affine Algebraic Geometry. The Russell Festschrift, Centre de Recherches Mathmatiques, CRM Proceedings and Lecture Notes, Vol. 54, American Mathematical Society, Providence, RI, 2011, pp. 85-122.

  18. S. Kaliman, F. Kutzschebauch, Algebraic volume density property of affine algebraic manifolds, Invent. Math. 181 (2010), no. 3, 605-647.

    Article  MathSciNet  MATH  Google Scholar 

  19. Sh. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Vol. I, Reprint of the 1963 original, Wiley Classics Library, A Wiley-Interscience Publication, New York, 1996. Russian transl.: Ш. Кобаяси, К. Номидзу, Основы дифференциальной геометрии, т. 1, Hayкa, M, 1981.

  20. H. Kraft, Geometrische Methoden in der Invariantentheorie, Aspects of Mathematics, D1, Friedr. Vieweg & Sohn, Braunschweig, 1984. Russian transl.: Х. Крафт, Гeoметричecкue метoды e меoриu uнeapuaнmoe, Mиp, M., 1987.

  21. F. Kutzschebauch, M. Leuenberger, Lie algebra generated by locally nilpotent derivations on Danielewski surfaces, Ann. Scuola Norm. Sup. Pisa, Cl. Sci., DOI 10.2422/2036-2145.201307_001 (2014).

  22. Y. Matsushima, Espaces homogènes de Stein des groupes de Lie complexes. I, Nagoya Math. J. 16 (1960), 205-218.

    MathSciNet  MATH  Google Scholar 

  23. L. Maurer, Über die Endlichkeit der Invariantensysteme, Math. Ann. 57 (1903), no. 3, 265-313.

    Article  MathSciNet  MATH  Google Scholar 

  24. G. D. Mostow, Fully reducible subgroups of algebraic groups, Amer. J. Math. 78 (1956), 200-221.

    Article  MathSciNet  MATH  Google Scholar 

  25. G. D. Mostow, Some new decomposition theorems for semi-simple groups, Amer. Math. Soc. 14 (1955), 31-51.

    MathSciNet  MATH  Google Scholar 

  26. G. D. Mostow, On covariant fiberings of Klein spaces, Amer. J. Math. 77 (1955), 247-278.

    Article  MathSciNet  MATH  Google Scholar 

  27. D. Mumford, J. Fogarty, Geometric Invariant Theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, Bd. 34, Springer-Verlag, Berlin, 1982.

  28. J.-P. Rosay, Automorphisms ofn, a survey of Andersén-Lempert theory and applications, in: Complex Geometric Analysis in Pohang (1997), Contemp. Math., Vol. 222, Amer. Math. Soc., Providence, RI, 1999, 131-145.

  29. D. Snow, The role of exotic affine spaces in the classification of homogeneous affine varieties, in: Algebraic Transformation Groups and Algebraic Varieties, Encyclopaedia of Mathematical Sciences, Vol. 132, Subseries Invariant Theopry and Algebraic Transformation Groups, Vol. III, Springer, Berlin, 2004, pp. 169-175.

  30. A. Toth, D. Varolin, Holomorphic diffeomorphisms of complex semisimple Lie groups, Invent. Math. 139 (2000), no. 2, 351-369.

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Toth, D. Varolin, Holomorphic diffeomorphisms of semisimple homogenous spaces, Compos. Math. 142 (2006), no. 5, 1308-1326.

    Article  MathSciNet  MATH  Google Scholar 

  32. D. Varolin, The density property for complex manifolds and geometric structures, J. Geom. Anal. 11 (2001), no. 1, 135-160.

    Article  MathSciNet  MATH  Google Scholar 

  33. D. Varolin, The density property for complex manifolds and geometric structures II, Internat. J. Math. 11 (2000), no. 6, 837-847.

    Article  MathSciNet  MATH  Google Scholar 

  34. R. W. Weitzenböck, Über die Invarianten von linearen Gruppen, Acta Math. 58 (1932), no. 1, 231-293.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SH. KALIMAN.

Additional information

2000 Mathematics Subject Classification. Primary: 32M05,14R20. Secondary: 14R10, 32M25.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KALIMAN, S., KUTZSCHEBAUCH, F. ON ALGEBRAIC VOLUME DENSITY PROPERTY. Transformation Groups 21, 451–478 (2016). https://doi.org/10.1007/s00031-015-9360-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-015-9360-7

Keywords

Navigation